
Intro/Read me
THE GOLDEN RULES
Important note on purging the database
Special prompt types

Assign
Using assign to set the value of a variable

Using queries
Query types

Ajax
CSV

What is callback?
Callback for cascading selects

Linked_table
Specify or not a linked_table_id

User_branch for form flow control
Editing your choice_list & worksheets
Editing settings sheet
The control worksheet

Basic Javascript notions
Libraries used by Survey
Compact Formulation: (condition) IF (formula)
Refer to a variable value in display.text or display.hint
Testing for existence of a value
The difference between selected(data(my_variable), “my_variable_value”) &
data(my_variable)

Quick tricks & tips
Troubleshooting/common errors

Error while initializing database tables
Error while accessing or saving values to the database.
Unexpected token ; (on form conversion)
Database.convertSelectionstring:unrecognized elementPath (some variable)

Intro/Read me

This document isn’t intended as a comprehensive review of how to code using ODK Survey
2.0. Its goal is to provide complementary information on the tutorials already provided on
opendatatkit.org: things that haven’t yet been documented, that are unclear or special cases.

For example, it isn’t relevent to go over the installation of a new form on the phone. But if
someone has useful Grunt commands that makes replacing the formDef.json faster/easier then
this would be an interesting addition, as long as those commands aren’t already in the ODK
documentation.

(If you bring information from other sources that’s OK because our main source of information
will be ODK .org)

THE GOLDEN RULES
1. Always use Headers to organize your intervention. You can find them in Format/

Paragraph style or use the ctrl + alt + (number). This allows the Table of Content to
automatically update when refreshed.

2. Update the ToC when you make additions (click in the general area and then click the
circle/arrow that appears top right).

3. Before making an addition:
a. Find the portion of the document where it will fit best
b. If you create a new section for it, ensure it wouldn’t be better off as a sub-topic.
c. Ensure it isn’t already covered. You can edit a section a section if it is incomplete

but don’t duplicate them needlessly.
d. It might be relevent to quickly check in the opendatakit.org document if this is

already covered or not.
4. Ensure that what you say is true. If unsure, add a comment/note. If it’s only been

partially tested, mention it.
5. Try to be precise and to the point.

Important note on purging the database
When you “Purge Database”, it is important to note that the purge happens only in the form that
is selected, not to all forms in your Application Designer.

In other words, purging the database at this screen is unlikely to achieve
much:

While doing it a this screen will do what you expect, i.e. allow you to open the form without
getting a “Error while accessing to saving to the database”:

Doing this will save lots of time in the long run. You might think your form has mistakes while it
might not be the case, the error being generated by the discrepencies between the database
and the modification made in your form.

Special prompt types

This section details particularities & tips about using certain prompt types.

Assign

Using assign to set the value of a variable

Let’s say that you have a calculation to give the user of a form a certain score, depending on
the answers given. You’re using the calculates sheet. What you want to do is to call on this
calculation at the end of your form, and assign that value to a variable that you will show to the
user.

To use assign you actually need 2 rows, as follow:

● Both rows need to have the same variable name (final_score in this case)
● The first row must be of prompt type assign. It must use a calculation: you could write

the calculation directly in the calculation column, or call a formula you’ve written in your
calculates sheet.

● The second row must have the same variable name. The prompt type must be the data
type that you will be using (most likely interger or decimal).

If you try to assign the value only with one row (prompt type assign), you will get the error “Error
while initializing database”. See troubleshooting below.

1. Using queries

Query types

Ajax
An ajax query calls a server where the data are stored and returns to you an object. It can be a
lot values, such as a list of all countries in the world.

There are many API to which you can address an Ajax query. In the example files an example is
set up using Yahoo’s API, which we will detail here. The general way to use Ajax queries is very
similar to CSV queries (see below), if you can make a CSV query work in your form, you can
make an Ajax query work.

The main difference between the 2 queries is the URI. Let’s take the following example:

The URI is the “question” you ask to the server such as:

"https://query.yahooapis.com/v1/public/yql?format=json&q=" + encodeURIComponent("select *
from geo.states where place='Indonesia'")

You can go to : https://developer.yahoo.com/yql/console/, which looks like this:

https://developer.yahoo.com/yql/console/

You can use the dropdown menues on the left to see what kind of information Yahoo’s API
contains (and thus what question you can ask him).

In “Your YQL statement”, you can write the YQL “question” you can to ask the server (which
is pretty much SQL). The YQL statement is actually part of the URI we send to Yahoo and is
highlighted in RED below:

"https://query.yahooapis.com/v1/public/yql?format=json&q=" + encodeURIComponent("select *
from geo.states where place='Indonesia'")
In the white box in the middle, this is the answer the server will give your. If you look at the
“REST QUERY”, you will see that the rest query is actually what we call in ODK the URI.
Therefore, if you want to construct an AJAX query on Yahoo, you can play around with these
elements, and once you get the REST query you can put it down in the URI cell of your form.

CSV
● The file must have a .csv format (not or other excel format).

What is callback?

The callback column is where you tell the CSV Query what information to get. This is a little
more complicated so let’s detail it. First, let’s look at the callback to extract data from a list of
countries in a .csv file. (it actually contains all countries, organized by continent)

To get a list of all the countries the callback would be:

_.chain(context).pluck('country').uniq().map(
function(place)

{
return

{
 name:place,

label:place,
data_value:place,
display:{text:place}
};

}).value()

Explanations:
● pluck(‘country’): It tells Survey which column you want to use. If we had used ‘region’

instead we would get a list of continents (Africa, Europe, etc).
● function(place): We could use any correct variable name instead of “place”. This is the

name of the object that will store your countries.
● .uniq(): If you only want distinct values. In this case we wouldn’t need it (each country is

listed only once in this list)

● return {name:place, label:place, data_value:place, display{text:place}}: A collection
of attributes:value pairs that you want each country to have:

○ I removed label and it didn’t seem to matter.
○ data_value: this the value you would use in another prompt, for example if you

wanted to add a condition (only present that question if the answer is “Canada”
for example).

○ display:{text:place}: This is what the prompt actually shows (if you use a drop-
down menu for example). text specify what type of data it is.

● These are Underscore library commands, so you can refer to their documentation for
creater details.

Callback for cascading selects

We would first need to run the previous callback on region, not country. This is easy to change.
Then the second callback will be on country:

Linked_table

[All the steps will be added soon I thought this section was actually completed already]

Specify or not a linked_table_id
If you do NOT specify a linked_table_id for a linked_table query where you allow addition/
removal of instances (for example, you a a Household form and you have a linked_table where
you add info on each household members to a different data table), then you will not have a list
of instances to edit/remove.

If you DO specify the table, then you will have something along theses lines:

As you can see, instances Billy & Bobboy are listed (along with any other candidate that might
have been entered in the data table). This is because in the query, linked_table_id was specify.
This is true even if the table_id is the same as form_id: you need to explicitely refer to it if you
want to have a list of instances in that table.

User_branch for form flow control
This can be use to let the user decide which subform they want to fill and in which order, as
opposed to a linear flow where everything is decided by whoever coded the form.

A brief summary of steps, followed by greater details:
● Insert a “do section name_of_my_control_sheet” at some point in your survey sheet
● Create a worksheet for your control subform & one sheet for each subforms
● Create a choice_list in your choices worksheet for each new sheet
● Add an entry in your settings sheet for each new sheet
● Structure you branching logic in the control sheet

Editing your choice_list & worksheets

It will be clearer if you create a separate sheet for your control of branches. Let’s say that you
want the users to fill a certain par of the survey (general informations perhaps). Then at the
point of the survey where you want users to choose which branch to fill, you will have to insert a
“do section name_of_my_worksheet”. Here it’s called “control”:

And below the list of all worksheet in this form:

You will need to add entries to choices, survey, settings and then create your control sheet to
code the branching options as well as one sheet per subform (here, subform1 & subform2).

You then need to create the choice_list for this. You can basically see the branching mechanism
as a select_one prompt, thus you need to create the list:

The list is name subformlist. The data_values are the same as the subform names but you
could choose diffently. exitpath is the choice that will let the user leave the subform selection
menu and continue in the normal form flow.

Editing settings sheet

Just like for the main survey sheet, you need entries for other sheets you have just created.

The control worksheet

This is the main part of the process, where you control the
flow.

Here we have named our control section subform_menu (arbitrary). Then, we have a
user_branch prompt type that refers to the choices_list we have created earlier (subformlist).
This will create a list of all subformed indicated in choice_list.

For each subform, we give a branch_label (the name of the choice in choice_list), so subform1
& subform2 here. When the user selects, say, subform1, there is a “do section” command that
guides survey to that subform. Once the section is completed, it comes back in this section and
reads the “goto subform_menu” command. This is so that the user is offered the choice of filling
another form, say, subform2.

If he wants to exit the subform menu, he choices “exitpath”. There is a exit section command,
that will bring him back to the rest of the survey sheet he was filling before entering this menu.

This what the menu will look like in the Application Designer simulation:

Basic Javascript notions
This shouldn’t turn into a full-on JS class. But a few basic JS notion will get you a long way in
understanding calculations in Survey (as they ARE JS calculations).

Libraries used by Survey
It can be useful to know which libraries are used by Survey, because you can call on their
functions in your forms (just as was done with the callback in CSV query). From potentially most
useful for you coding form to the least usefull:

● Underscore: http://underscorejs.org/
● jQuery:http://api.jquery.com/
● Backbone: http://backbonejs.org/

I would NOT detail each & every one of theses here, BUT for some commonly used functions it
might be worthwhile to detail their syntaxe & uses.

Compact Formulation: (condition) IF (formula)

You might have come accross this kind of formulation in the Survey examples:

selected(data('birthdayKnown'), 'yes') ? (now().getTime() - new Date(data('birthday')
).getTime()) / (1000 * 60 * 60 * 24) : data('monthsOld')*30

http://underscorejs.org/
http://api.jquery.com/
http://backbonejs.org/

This is a compact statement in JS. Let’s break it down. This statement can be broken into 4
main parts: before the ?, the question mark & after:

● selected(data('birthdayKnown'), 'yes'): This is a condition. It can be any condition that
can be evaluated in JS. In that case, if the prompt “birthdayKnown’ evaluates to “yes”....

● ? : The question mark basically means “IF” statement.
● (now().getTime() - new Date(data('birthday')).getTime()) / (1000 * 60 * 60 * 24): This is

the calculation performed, assuming the condition before the ? evaluates to TRUE.
● If it evaluates to FALSE, then it does the calculation after the “:”, in other words: :

data('monthsOld')*30
● In English: “If they answered yes to birhdayKnown, then use (a bunch of other answers

to prompts) and get me the resulting value. If they answered something else, then do the
calculation after the “ : “ and get me that value instead.

Refer to a variable value in display.text or display.hint

In that case, you can’t just use something like data(‘name_of_variable’). You must use the curly
braces, as such:

“ My name is Franck and I am glad to meet you {{name_of_interlocutor}} “.

In this case name_of_interlocutor will be replace by the variable value, Bob, John, Tracy…

Testing for existence of a value

Let’s say you can to test if a value has been provided to your prompt “What is your name?”. The
name of the prompt is “your_name”

The following expression:
data(‘your_name’)

will evalute to “TRUE” if the user entered any data, and “FALSE” if not. So for example:
data(‘your_name’) ? “Thank you” : “Please enter your name”

Will return “Thank you” if an answer was provided, and “Please enter your name” if not. (See
Compact Formulation section for details on this notation).

The difference between selected(data(my_variable), “my_variable_value”)
& data(my_variable)
In short: data(my_variable) returns the value of “my_variable”.
Selected(data(my_variable), “my_variable_value”) returns true if my_variable has value
“my_variable_value”. You should use selected(....) for select_one, select_multiple kind of
prompts & data(....) for the rest.

Quick tricks & tips
● If you put 2 forward dash (“ // “) in the first column to comment it out (but not the

“comments” column, if you put yours first). It won’t be used in the JSON file, so you can
try to spot errors this way while debugging or trying out different version of a prompt.

Troubleshooting/common errors
This section is geared primarly at helping debug non-specific error messages as they can be
hard to fix. If you add something here:

● Try to indicate when the error occurs… Is it while opening the form? Saving it? Selecting
some anser? Which one? In which context?

Error while initializing database tables
● When/where it happens: in AppDesign when you are just about to select which form

you want to use
● Possible cause: by a misuse of “assign” prompt type: when using “assign”, you must

have 2 rows (see section on “assign prompt”

Error while accessing or saving values to the database.
● When/where it happens: When you try to create a new instance of a form

○ Possible cause:
■ You might have changed variables in your form, uploaded the

formDef.json file but forgot to purge the database. So when it tries to
create a new form, the variables indicated in the formDef.json don’t fit the
database tables. If you did purge, try it again.

Unexpected token ; (on form conversion)
● It should also tell you where the error happen (sheet xxxxx, column yyyy, row XX)
● When/where it happens: When trying to convert a XLSX form into JSON format

○ Possible cause:
■ You very likely forgot a parenthesis and the converter is confused about

when your instruction ends.

Database.convertSelectionstring:unrecognized elementPath (some variable)
● Usually caused by a linked_query that doesn’t have a model sheet, incomplete model

sheet. More specifically, you need to specify to the child table (i.e. the table you adress
the query to) what auxilliaryHash you are using in your request. See the section about
model sheet in the documentation for details.

