
ODK Tables: Building Easily Customizable
Information Applications on Android Devices

Waylon Brunette, Samuel Sudar, Nicholas Worden, Dylan Price,
Richard Anderson, Gaetano Borriello

Department of Computer Science and Engineering
University of Washington, Seattle, WA [USA]

{wrb, sudars, dylan, anderson, gaetano}@cse.uw.edu, nick.c.worden@gmail.com

ABSTRACT
ODK Tables is an Android app that allows users to enter and
curate tabular data. Users can explore the data through a variety
of built-in views or build custom views using HTML/JavaScript.
It also supports the linking of multiple data tables. Data values can
be updated in a variety of ways, including using mobile data
collection tools such as ODK Collect, that support rich data types
including multi-media, or by communicating with low-cost
phones over SMS. Additionally, ODK Tables supports a simple
synchronization scheme appropriate for a distributed workforce
and backed up on cloud servers. The goal of ODK Tables is to
lower barriers to developing customized information applications
by making it easy to customize data views using standard web
technologies that do not require recompilation. Our experience in
working with many organizations in the developing world led us
to make feature choices based on their input (through an on-line
survey) with particular consideration to the potential pool of
developers available. In this paper, we report on our
implementation of ODK Tables and some of its performance
parameters. We have designed it to be a flexible solution for a
variety of use cases, including logistics management, public
health, and environment monitoring where previously collected
data is often revisited and updated.

Keywords
Open Data Kit, mobile phones, mobile database, spreadsheets,
SMS, data tables, remote synchronization.

1. INTRODUCTION
Tools that simplify mobile data collection, such as Open Data Kit
(ODK) [13, 26], have helped make smartphones a suitable
platform for ICTD applications. With increasingly powerful
mobile tools available, organizations desire more sophisticated
data collection capabilities that go beyond simply replacing paper
forms with a convenient user interface on a smartphone. For
example, a rural clinic might organize schedules for doctors and
nurses as a table with columns for time slots and patient names.
Organizations of fishermen or farmers might track market prices

and the amounts of available goods in a pair of tables. Health
officials planning a vaccine deployment in a developing country
might track refrigerator inventories in a set of linked tables (e.g.,
refrigerator inventories at clinics, clinics within a district, and
parameters of refrigerator models).

ODK Tables [14] is intended as a general-purpose data
management app for Android devices that can be customized by
an organization, enabling them to deploy a range of information
services. It occupies a space between data represented in
spreadsheets (e.g., Excel) and relational databases (e.g., Access),
the two most common general-purpose data management methods
now in use in the developing world. However, we only include
features that are commonly used across many domains and are
relatively easy to explain to users. We exclude features that are
highly specialized, error-prone, or just too cumbersome for the
smaller screen size of a phone. Many advanced features can be
implemented through extensions that organizations can deploy
through standard HTML/Javascript/CSS. Thus, ODK Tables is a
flexible, open source platform that enables workers in the field the
ability to collect, manipulate, and view data on their Android
devices, share data between devices, and save the data to the
cloud.

ODK Tables enables users to aggregate, curate, analyze, and
visualize their data on mobile devices. It provides a number of
built-in views (e.g., table view, list view, map view, graph view)
that can pull data from, and link to, other tables, so that users can
form an integrated mobile application, rather than a set of loosely
connected (or completely disconnected) tables. Data values can
either be updated in Tables or can leverage ODK Collect, a widely
used mobile data collection tool supporting rich data sets
including location coordinates and multimedia.

Many information systems often require an internet connection to
access data, which is challenging in developing regions where
connectivity is not as reliable. Because ODK Tables caches data
on the mobile device itself, it enables workers to explore and
update relational data while in the field – even while
disconnected. These intermittently-connected mobile devices can
synchronize with a cloud-based server when possible and thus
share portions of larger data tables.

ODK Tables includes an SMS interface, enabling users with a
feature phone or no internet data plan to add rows or query for
data. The smartphone caching a data table acts as a local hub with
additional local expertise, namely, the field workers themselves,
to further refine or structure the data before it is disseminated
more widely through the server synchronization process. Thus,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DEV '13, January 11-12, Bangalore India
Copyright © 2013 ACM 978-1-4503-1856-3/13/01... $15.00

this synchronization scheme keeps data tables synchronized
across a distributed workforce as well as the backup cloud servers.

This paper presents the ODK Tables platform for building mobile
information applications for collecting, querying, updating, and
reporting data. First, we discuss several target use cases that drove
some of the requirements for ODK Tables. We then discuss the
implementation and design decisions that help enable a varied set
of applications, such as fine-grain access control and the user
filtering mechanism for distributing large data tables to users, the
client synchronization mechanism, and the conflict resolution
strategy. Finally, we present a preliminary evaluation including
basic performance numbers and discuss future project directions.

2. CASE STUDIES
There are many situations where data needs to be organized and
shared between many users. A simple table is a common method
of organizing data to be shared, as evidenced by the prevalence of
simple Excel spreadsheets. While tables may be a good way to
organize information, spreadsheet applications are not necessarily
the best way to manage and access these tables. Doctors at a clinic
might want to see a schedule of their appointments for each day.
Fishermen and farmers could benefit from being able to query a
database through SMS messages to find the best market for their
goods. Cold chain logisticians need their tables to connect to each
other so that they can judge if they will have adequate
refrigeration capacity for a new vaccine campaign. These
situations call for more than a set of simple spreadsheets, but not
the extra complexity of a complete relational database system and
its cumbersome SQL query language. To be of use to non-
technical users, the platform needs to be intuitive and provide
users with several ways of viewing data including entirely custom
views developed by the users’ organization. To determine a
general set of requirements and the common features needed for
ODK Tables, we studied five representative use cases with a
particular focus on cold-chain monitoring.

2.1 Cold-Chain Monitoring
National immunization programs are an effective public health
intervention that is essential for controlling diseases. An important
component of these programs is the vaccine cold chain—the
equipment (cold rooms, refrigerators, freezers, cold boxes) used to
store the vaccines. It is essential to have adequate cold storage
space to ensure that vaccines are kept in an appropriate
temperature range from arrival in the country until they are
delivered to patients. A cold chain inventory is a management tool
for tracking the cold storage equipment used in the country’s
immunization system. A cold chain inventory consists of
information about the health facilities (location, type of facility,
role of facility in the immunization system, the size of the
population served by the facility, and infrastructure information
such as the availability of electricity and other fuels), as well as a
list of the cold chain equipment for each facility. The key
information about equipment comprises the model, fuel type, age,
and working status. In some cases, the cold chain inventory is
also used to track performance data such as the number of times
the temperature is recorded as out of an acceptable range.
Accurate knowledge of the vaccine cold chain allows
identification of sites with inadequate storage, improved
allocation of new resources, and makes it possible to plan for
introduction of new vaccines.

Unfortunately, cold chain inventories are frequently out of date,
with a large amount of inaccurate information. To address this, a

system-wide update is needed, which includes facility visits where
the assets are determined (possibly with respect to a reference list
of equipment from an earlier inventory). The inventories are
conducted by trained teams of enumerators who visit all facilities
in a region. For a paper-based inventory, forms are filled out at
each facility, collected, and sent to a central location for data
entry. Eventually, all information is combined into the national
database. The inventory information is often stored in
spreadsheets. The Cold Chain Equipment Manager (CCEM)
software [1] was developed to provide an improved management
tool for Ministries of Health in working with the vaccine cold
chain. The usefulness of CCEM is dependent on the extent to
which the inventory can be kept up to date. A software system
that supports a remote workforce making real-time updates on
location will significantly improve the inventory update process.
When field workers verify the cold chain, it would be helpful if
instead of outdated paperwork they could use a mobile device that
automatically downloads the subset of cold chain information for
the district showing the most up to date information. Automatic
updates may also decrease duplication of work between
fieldworkers because a synchronized mobile device would always
have the most current information.

2.2 Basic Search
A very common application is to help people find a specific piece
of information in a larger index. For example, a table populated
with weather forecasts could be queried based on location or date
(or both), or a table of bus schedules could be queried by route
and time. Applications need to be able to query with conditions
such as “time > now” or ask for a specific piece of information by
inputting an identifier (e.g., a bus stop number). An example
ICTD project of this type is the *bus project [2] where users query
transport arrival times via SMS.

2.3 Market Prices
One particular instance where both basic search and basic data
collection could be useful is the exchange of price information
[24]. For example, farmers or business agents can send
information about their available crops to a phone storing values
in a simple table, allowing buyers to query the table to find
products they are seeking. Data rows might include type of crop,
quantity, price, and location, permitting buyers to limit results to
their area or search based on asking price.

2.4 Scheduling
Doctors and other skilled workers are often in heavy demand in
the developing world. Managing and scheduling both personnel
and shared resources such as equipment is necessary to ensure that
these limited resources are not under-utilized. Therefore, the
platform must be designed to make it easy to create a scheduling
system. For example, if a work day is defined as 8am to 6pm and
rows already exist with time range values from 9-10 and from 3-4,
a response to a query for availability would include the time from
8-9, 10-3, and 4-6. These appointment options could be useful for
a variety of small businesses, as well as other organizations like
health clinics, to allow clients to query, set, and confirm their
appointments.

2.5 Automated Data Collection
In addition to updating cold chain inventory with site visits,
automated data about a refrigerator’s current temperature can be
collected and viewed on an Android device. To obtain automated
information, organizations can deploy a sensor reporting tool such

as FoneAstra [5] that can be used to attach sensors to low-cost
mobile phones so that their sensor data can be reported via SMS.
The data acquired (refrigerator's ID, temperature, time) can be
sent automatically to a central server and/or a supervisor’s
smartphone. The data can be tracked, summarized, and graphed,
allowing supervisors to check the status of all storage units from
their own phones, as well as store and view historical information.

3. REQUIREMENTS
The requirements of this project evolved from a set of use cases
for ICTD projects in the developing world (such as the subset
described in the previous section) deployed by organizations that
already employ existing ODK tools. Based on feedback from
these users and their feature requests, as well as our own
deployment experiences, we identified a common model for these
use cases – namely, an organization with many field workers who
need to share a single dataset consisting of multiple tables. The
workers may need to view and update this dataset in the field, and
the managers need to be able to distribute portions of the dataset
and restrict access so that field workers only see and edit the parts
that are relevant to them. Additionally, we conducted an online
survey of ODK users where 85 respondents from around the
world provided information on what were the most important
features that would improve their experience with ODK, as well
as what missing functionality prevented their adoption of the
current ODK toolset for some of their projects. When asked to
rate how important it was to “Keep data on a mobile device
synchronized with a server” 55% of the respondents gave a rating
of 5 corresponding to “Very Important”, with a mean of 4 and
standard deviation of 1.24.

Informed by the answers to questions such as these, we derived
the following requirements that were not being adequately met:

• Add, delete, search, and update existing data, as well as
custom queries to extract useful information. The ability to
interact with the data, rather than merely collect it, was one of
the most desired features requested by respondents to the online
survey. Moreover, data tables can be linked (or joined, in
database parlance) to connect two columns in two different
tables. The ability to import large amounts of data to build a
new table from a standard spreadsheet file (e.g., csv) and export
data to the same file formats for easy interchange with other
tools was also cited. Finally, the inability to pre-load an editable
dataset, possibly using the structured ODK Collect form
rendering tool, was the most common reason given for an
organization choosing not to adopt ODK.

• Share data across devices and keep the ensemble
synchronized. Besides simply backing up data, it should be
possible for multiple devices to access and modify the same set
of data (with subsets keyed to different clients), and the data
should stay in sync as tightly as connectivity limitations permit.
Conflict resolution will most likely require human judgment,
and a good user interface is essential for accomplishing this
task.

• View data in multiple ways. Built-in views to ODK Tables
include spreadsheet, list, map, and graph views, but users
always want more customization for a particular emphasis or a
different subset of information. It is important that these custom
views be possible without having to recompile the app. On the
back end, the ability to aggregate and summarize data collected
from multiple field workers was rated as “Very Important” by
60% of respondents.

• Robustness to sporadic network connectivity. The application
should never rely on connectivity being available and must be
able to cache data from the server as well as new data or edits
entered by the user until connectivity is established. The
synchronization protocol must deal gracefully with limited or
no connectivity.

• Easy to deploy and maintain yet flexible enough to be
customizable to different needs. Many organizations in the
developing world do not have the ability to take on
sophisticated IT responsibilities. The basic solution should be
simple for less technical users to set up and keep running.
However, it must be possible to customize as a project and the
workforce matures using standard web technologies. Training
costs must be kept low and be incremental as more advanced
features are exploited or developed.

• Provide moderately fine-grained access control that allows
both table and row-level permissions. Administrators should be
able to restrict access to tables and metadata as well as easily
subset tables so that each subset can be made accessible for a
particular user or group of users. As most ODK users are
already used to the data form model, their finest-grain size is a
row of a table resprenting one instance of a form. The forms
used for editing the data include finer-grain controls for
restricting access to individual data fields. There must also be a
simple mechanism for adminstrators to create groups of users
and set access controls for each group.

• Maintain a complete history of changes to a table on the
server. When rows are created, updated, or deleted, the history
of these changes should be saved and made accessible to
administrators for post-analysis of any problems that may arise.

• Scalability in terms of data and number of users. It must be
possible to efficiently handle (UI interactions, file
import/export, synchronization, etc.) moderately sized datasets
(1000s of rows in tables with 10s of columns). Additionaly,
deployments involving 100s of workers and client devices must
not pose special challenges to the server infrastructure.

• Extensibility to other server backends. In the modular spirit of
ODK, in general, it should be possible to adapt the server
storage and synchronization protocol to different backends
using a RESTful HTTP API. Similary, new clients (e.g., an
embedded monitoring sensor) should be able to implement a
small set of interactions to a server using the same API.

4. RELATED WORK
There are several smartphones apps that implement traditional
spreadsheets (i.e., Excel-like functionality where formulas can be
attached to individual cells). The name “ODK Tables” was
specifically chosen to highlight the distinction from spreadsheets
and emphasize the similarity to relational database tables.
Formulas are all column-based rather than cell-based as in
traditional spreadsheets making the presence of simple built-in
formulas (e.g., max, mean, etc.) readily visible rather than hidden
within a cell. Similarly, conditional formatting is also applied at
the column level to ensure consistency.

Many projects support client-server replication systems for mobile
computing such as Bayou [23], Coda [15], and PRACTI [4] that
enable disconnected operation, but are not necessarily designed to
manage data access restrictions for large numbers of users who
need to share subsets of data. Commercial technologies such as
Dropbox [10] have simplified synchronizing files between

devices. These are not adequate for our users, who need a more
fine-grained system, as small portions of data (just one row of a
table) may be changing as field workers go about their daily tasks.
Mobius [8] creates a mobile unifying and data serving abstraction
for mobile apps that provides automated caching, predicates,
notifications, and protocols for disconnected operation.
Interestingly, Mobius presents the programming abstraction of a
logical table of data that spans devices and clouds. However,
Mobius is too heavy-weight a solution for our requirements as we
do not need predicates or notifications because of our need to
minimize the amount of network traffic to keep operating costs
low and only synchronize when possible or requested by the user.

Additionally, other database applications have similar
synchronization functionality; however, the currently available
database solutions have drawbacks that make them a much less
than ideal choice. For example, CouchDB [9] is a “database that
completely embraces the web.” As such, it has built-in access
control and synchronization features and is accessible through an
HTTP API. However, CouchDB is a JSON document-based
database and does not cleanly map to the relational model of data
in ODK Tables. The document paradigm means that each
database is simply a collection of documents that are independent
and schema-free. In ODK Tables, we wanted to retain the simple
table concept of spreadsheets with typed columns; it is hard to
map this to a representation in CouchDB in an efficient way.
Since the relational model is so well understood and supported by
Android’s SQLite, it makes little sense to take on additional and
unnecessary complexity.

Google Fusion Tables [12] is a service offered as part of Google
Docs that provides access to simple cloud-based tables and
presents an HTTP API based on SQL. The big disadvantage of
Fusion Tables for the synchronization protocol is the inability to
insert processing logic into the data path between a mobile device
running ODK Tables and the backend database. This limits
functionality to only the features provided by the Fusion Tables
API. For instance, Fusion Tables does not provide any
mechanisms for controlling concurrent access to the table, does
not expose its access control model through an API, and does not
provide permissions on a finer level than a whole table.

Tablecast [22] is an XML protocol built on top of the Atom
syndication format [3]. It is designed specifically for dealing with
concurrent modifications to tables of data. However, because it is
based on the Atom specification, Tablecast relies on a
publish/subscribe architecture where each participant acts as both
a client and a server. Modifications to a table are published as a
feed, and multiple feeds from multiple publishers can be merged
together to see the latest state of a table. This is a bad architecture
for the requirements of the synchronization protocol because
many mobile devices (such as smartphones), with their limited
battery life and network connectivity, can be unreliable as
providers of feeds. Furthermore, the architecture would require
phones to talk directly with each other, which is error-prone and
cumbersome for the same reasons.

Oracle's Database Mobile Server [18] fulfills almost all of the
stated requirements. It uses a relational model to synchronize data
across mobile phones and to a backend server. It has sophisticated
access control, handles concurrent updates and conflict resolution,
and allows inserting arbitrary processing logic into the data path.
While it meets the technical requirements, Oracle's Database
Mobile Server is proprietary and expensive, putting it out of reach
financially for many projects in the developing world, and it is

difficult to customize and extend as it is not an open-source
project.

Finally, there are few systems that seek to realize similar
capabilities as ODK Tables. SMS has been the basis of numerous
data collection tools for the developing world, including
FrontlineSMS [11], RapidSMS [20], and UjU [16]. SMS has also
been used for querying, such as with SMSFind [6]. These projects
are generally built for large-scale deployments and require
additional equipment (such as laptops) or rely on a server in the
infrastructure to process messages, thereby raising the bar to
deployment. FrontlineSMS has shown the viability of many use
cases for SMS data. RapidAndroid [19] also uses the smartphone
as a server but does not provide a general-purpose user interface
to database tables.

5. IMPLEMENTATION
Data tables are the underlying abstraction used by ODK Tables
(hereafter referred to simply as “Tables”). Different tables can be
linked – thereby creating a “join” in the vocabulary of relational
databases. However, we do not write queries in SQL. Queries
can be initiated through the app’s search box where terms are
logically ANDed and applied only to the rows of that table. The
same logic is applies to SMS queries directed at a table. HTML
files that are used to look at a detailed and formatted view of a
row’s contents can access the data linked from other tables.

Tables’s user interface is optimized for the smaller screens of
Android devices and provides customization capabilities for users
to easily configure the app for their use case. Some of these
capabilities include grouping, sorting, and updating the data in the
data tables (always one row at a time – larger data changes are
effected on the server-side and synced to clients)..

Tables utilizes a built-in data synchronization system that
leverages existing ODK tools. The synchronization protocol is
built as an HTTP API as part of ODK Aggregate, taking
advantage of the security and database-agnostic server storage
layer. ODK Aggregate is also container-agnostic, meaning it can
be deployed to the cloud or a private server.

5.1 Android Client
The Tables Android client allows users to create new tables, add,
delete, search, edit, and scroll through data, add columns,
configure data types, view graphs, set up conditional formatting,
perform summary calculations on data columns, interact with the
data through an SMS interface, synchronize the data up to and
down from the cloud, and set up data access controls. Many
features are configured only once during setup by an
administrator, who configures Tables for a particular application
(or use case). Tables has a number of built-in views, and allows
users to create their own views with HTML and JavaScript. These
views can pull data from, and link to, other tables, so that users
can form an integrated app, rather than a set of loosely connected
(or completely disconnected) tables. Tables uses Android’s
SQLiteDB to store both settings information and user data.

Initially, the database is populated with several tables: one for
table properties (table_definitions – an entry for each table) and
one for column properties (column_definitions – an entry for each
column in every table). The table_definitions table contains
information about the user-created tables, and has columns for
data such as the table ID and the table's name. Another table,
table_key_value_store, holds settings that are required only for
correctly displaying the table. This includes such data as display

name, column order, and font size for the default spreadsheet-like
view. The column_definitions table holds information about all
the columns of each table, including the ID of the table of which
the column is a member, the column ID, and the column name.
Another table, column_key_value_store, is the column analog to
table_key_value_store, and contains the same sort of Tables-
specific information, but relating to columns. Each column can
have a data type (e.g., number or date range), which is used to
restrict the values that can be put in the column. If a column’s
values are restricted to a limited number of specific strings (such
as the multiple-choice questions found on many paper forms),
Tables has a multiple-choice data type that includes a list of
allowable data values for that column. Users can also set up an
abbreviation for the column (e.g., a column for dates of birth
might have “dob” for an abbreviation), which can be used for
convenience in searching and interactions using SMS messages.

We use CSV files as an interchange format to easily move files
between any combination of servers and clients. If a user has data
to import (such as from an existing Excel spreadsheet), they can
put a CSV file on the device and use Tables’s CSV importer to
create a new table with data from the CSV file. Users can export
CSVs from Tables with table settings included, and can then re-
import it to a new phone to create a table with columns, data, and
settings from the original table. Lastly, a user can also create an
empty table with no initial columns, and construct the table by
adding each column individually from within the app.

Figure 1: Table view of cold chain facilities (left) and a list

view of the same information (right).

5.1.1 Views
Tables provides a number of different data views and allows users
to choose which view they prefer on a per-table basis. The default
view is, naturally, the canonical spreadsheet table view, and is
shown in Figure 1 (left). The colors in the middle column are an
example of conditional formatting. A list view (see Figure 1
(right)) is specified by an HTML/JS file and the application
developer can choose which subset of the table data to display and
how.

Tables also has graphical (see Figure 2 (left)), map, and HTML
views of a particular row in more detail (see Figure 2 (right)). For
the graph views we use the d3.js package [25] and can have
graphs configured by type, with x and y axes chosen from the
colmns in a table. The detailed view is another HTML/JS file that

can also display information from lined tables. The map view uses
the Google Maps API (not shown) including off-line caching.
Colors from conditional formatting are passed down to all these
views so that the user sees a consistent formatting independent of
view.

Figure 2: A detailed row view of one of the facilities
of Figure 1 (left) and a graph view (right) including

conditional formatting from a different table.
There can be multiple HTML/JS files for list and detail views
which the user can select. The HTML/JS files can be transferred
directly onto the device from any connected computer, or can be
uploaded to the server and synched to the phone. Tables provides
templates that require simple JS commands for accessing data and
basic HTML for formatting. This is accomplished through two
objects (“data” and “control”) passed from the Java environment
of the app to the JS environment of Android WebViews that is
used for rendering. With these objects, the user's custom view can
access data and open new views. Additionally, the data object
allows access to data by row number and column name. The
control object can be used to query for additional information
(from any table), with the same user search format as used in the
app’s search box.

5.1.2 Adding, Browsing, and Searching Data
Tables utilizes ODK Collect to enter and edit data. Collect is
based on a simple form model but support rich data types
including locations, barcodes, photos, audio recordings, etc.
Double clicking on a cell initiates an Android Intent to Collect
along with a dynamically generated form with just a single entry
for that cell. This approach allows editing to be done in an
enforced format (set by the column properties) rather than in free-
form text which is highly error-prone. For example, a column
providing four options would obtain a Collect form with those
four options listed with a radio button showing the current value.
Large data types such as photos have the filename and path
entered into the cell so that a current file can be found an
displayed or a new file created by firing an Intent to the camera.

Entire rows can be edited similarly through a dynamically
generated multi-screen form, or through an optimized form to
accompany the table that is prepared in advance. In fact, Tables
even supports a column data type of “form” so that individual
rows can trigger different forms (an example of this would be
multiple medical forms to be completed by different patients

visited by a community health worker). Thus, users can launch
ODK Collect with a form using current values in a row as starting
values. On returning to Tables from Collect, the values from the
ODK Collect instance fields that match table column names
replace those in that row.

When viewing data in a large table, we often want to organize it
into categories, such as grouping patient data by patient or
grouping market prices by the type of goods. Categories are
particularly useful for keeping track of historical data; for
example, if an organization is collecting temperature data every
hour for a number of refrigerators, they would likely want to be
able to see: a) the most recent data for all refrigerators and b) all
data for a particular refrigerator. Relational databases do this with
“GROUP BY” and “ORDER BY” statements in SQL. Tables can
designate columns as “index columns,” meaning they are used to
group data or “collections”. If they have marked at least one index
column, users can have two views of their data: an overview,
which shows one item from each group; and a collection view,
which shows all the items in one particular group. A user can also
designate a “sort column,” which is used to determine which row
from each group is shown in the overview – a combination of
“ORDER BY” and “FIRST()” in SQL – (e.g., refrigerator data
could be sorted by a timestamp column, so that the most recent
reading for each refrigerator is shown in the overview).
Collections might not be the only way a user wants to browse
their data, so users are also able to search a table with column-
value pairs (logically ANDed) and obtain a subset of the table that
matches the search terms. All views work the same way, with
only items matching the search terms currently in the search box
being listed, graphed, or mapped. In essence, we map some of the
most common SQL constructs in simple column properties and
search conditions.

To perform a simple search a user puts the column name in front
of the search text. For example, to search patient records for Bob
Smithson the search box would contain the string “name:Bob
Smithson”. To narrow the search for a tuberculosis patient the
string would be revised to “name:Bob Smithson
illness:tuberculosis.” For more complex situations (such as cold-
chain monitoring), users might want to perform searches that use
data from multiple tables. As an example, suppose there were
tables for administrative districts, clinics, and spare parts, and that
each clinic was in a particular district (specified by a district_id
column in the clinic table) and each spare part was in a particular
clinic (specified by a clinic_id column in the spare parts table). A
clinic with a broken condenser could find a clinic in their district
with a spare condenser using join searches. Such a search would
be done on the clinics table, and would be as follows:

“district_id:mydistrict join:spare_parts (type:condenser) id=clinic_id”

 This query searches the spare parts table for rows where the type
is condenser, then joins the result with the clinic table, where the
clinics table id matches the clinic_id from the spare parts table.
“district_id:mydistrict” restricts the results to clinics in
mydistrict. The user's search results are the clinics in mydistrict
that have a spare condenser. We are working on simplifying this
syntax.

5.2 Synchronization Protocol
The synchronization protocol provides a mechanism to keep data
on multiple devices running Tables synchronized to a master copy
stored in the cloud. For our initial implementation we built the
data synchronization cloud service into ODK Aggregate to
leverage the security and database agnostic storage layer, which

enables operation from the cloud or a private server. Aggregate
hosts the master table and is used to synchronize multiple
instances of Tables running on client devices. The basic
architecture shown in Figure 5 consists of an HTTP API exposed
by Aggregate that is contacted by one or more mobile devices
running Tables to synchronize data. The API is based on a REST
architecture and defines a set of resources that can be manipulated
using common HTTP verbs such as GET, PUT, and DELETE.
The top-level resource of the HTTP API is a table. Under this are
the sub-resources rows, columns, properties, and access control
list (ACL). Authentication is handled using Google accounts and
the OAuth2 [17] protocol.

All operations are idempotent, thereby simplifying the API
because clients do not have to worry about losing results, as
requests can be safely repeated. Concurrent access to the rows of a
table are handled with a form of optimistic concurrency control,
where once a set of changes are accepted then all others will be
rejected until the client synchronizes to the currently accepted
changes. When a Tables instance makes a request to update a row
in a table in Aggregate, Aggregate locks the entire table and
executes the update, which includes updating the version of the
row, called the “entity tag”. Any concurrent updates must wait for
the lock, and when the lock is obtained and the second update
attempts to alter the same row an error will be thrown because the
second update’s row version (i.e. “entity tag” or “etag”) no longer
matches the version of the master row in Aggregate. The second
update will consequently be rejected, forcing Tables to resolve the
conflict between the pending changes on the client and the
updated master row on the server before any further changes to
the master row is allowed.

A challenge in building the synchronization protocol was
designing Tables to track the synchronization state for every row
of a table. To simplify the many possible states in which data
could exist, we created a simple a finite state machine for the life
cycle of a row. The state machine is shown in Figure 3 has six
possible states for a row:

• Null: the row does not exist
• Inserting: the row needs to be inserted on the server
• Rest: no changes to the row need to be communicated to the

server
• Updating: the row needs to be updated on the server
• Deleting: the row needs to be deleted from the server
• Conflicting: both the Tables and the server's copy of the row

have changed and the user needs to resolve the conflict
between them

Figure 3: Synchronization state machine for a row in Tables.

Each transition in the state machine is either the result of a user
action or the synchronization process. For example, when a user
creates a new row on the phone, the row is moved from the Null
state, meaning it doesn't exist, to the Inserting state. From the
Inserting state, there are three different possibilities: the user
deletes the row, the user updates the row, or the synchronization
process runs. The row stays in the same state if it updated locally
including possible deletion. If the synchronization process is run,
then the row will be inserted into the table on the server and the
synchronization process will transition the row to the Rest state to
indicate all of its changes have been propagated to the server.

5.2.1 Conflict Resolution
Tables is designed to have the user determine how to resolve
conflicts that occur whenever two users concurrently update the
same row in a table. There are two main options for conflict
resolution strategies: automatic or manual resolution, and server-
side or client-side resolution. Manual, client-side conflict
resolution was chosen for the synchronization protocol because of
the complexity of trying to automatically resolve conflicts from
devices that may not be time-synchronized and may be
disconnected from the network for an extended period of time,
making it difficult to resolve conflicts based on techniques such as
most recent modification. In an automatic resolution scheme, an
administrator would need to configure rules, such as to always
take the changes of a certain user or group over another, or to try
and intelligently merge the changes on a column by column basis.
This would make the server complex to implement and would still
likely lack additional configuration possibilities that organizations
might desire for their application. Additionally, the assumptions
built into automatic resolution may not be accurate for the many
diverse use cases that exist in developing regions. The aim for the
client-side conflict resolution system is to keep the user involved
with reconciling conflicts. This is advantageous since many times
the user understands the semantics of the conflict and can better
fix the conflict than can an administrator at a later date.

To minimize the number of conflicts, updates are row-based to
keep changes to small bundles. Taking cold chain inventory
updates as an example, if updates are at a coarse granularity, such
as the whole table or file, a conflict might be detected for two
workers updating the number of fridges at different sites that do
not overlap. By keeping conflict detection at the row level,
multiple users can make updates to shared data and the system
will detect that there is not a conflict as long as the same piece of
shared data doesn’t change. Cell-based conflicts would be an even
finer grain unit that would reduce conflict detection further.
However, in a single row many cell values are often inter-related.
We felt that too much context would be lost, and that errors could
occur in reconciliation due to lack of context. By always keeping
the server in a consistent state, there can only ever be conflicts
between a row on the user's phone and a row on the server.
Furthermore, the user who caused the conflict is likely to know
how to resolve it, so putting the responsibility in that user's hands
is a sensible approach.

Figure 4 shows an example Tables synchronizing an existing table
with Aggregate. In this example, the server has three rows with
changes that Tables does not know about, and Tables has a row to
insert and a row to update that the server does not know about.
First, the Tables client retrieves the latest entity tags that represent
the current version number for both data and properties of the
table. Entity tags are universally unique identifiers to prevent
multiple Tables instances from having their version identifier
collide without realizing the values are different. For the purposes

of this example, the versions are simply integers that are
incremented every time a change is made to the table data or
properties, respectively. By retrieving the latest version
information, Tables can determine whether a change in the data or
metadata has occurred since the last synchronization, as the
version information would be different if there was change. For
this scenario, Tables starts at a data version of 2 and a properties
version of 2. Since the server is at a data version of 5, the Tables
instance requests a diff representing all changes to the rows of the
table since the table was at data version 2. The server responds
with a list of the three rows that have changed. Tables then
determines if the row is a new row or an update to a row it already
has and inserts or updates the row accordingly. With Tables data
being up-to-date with the server it is able to push its changes to
the server. The server responds with the latest state of the row,
including a new row version, which Tables saves with its local
row copy.

Figure 4: Tables synchronization sequence with Aggregate.

5.2.2 Access Control Model
Access control is important for applications that value security
and privacy, such as medical applications. Organizations might
want to limit health worker access to patient data to only that
worker’s assigned patients. Additionally, in some scenarios
managers need to be able to distribute portions of the dataset and
restrict access so that field workers only need to edit/view a small
subset of a dataset that is relevant to their task. The cost to
distribute the entire dataset to a mobile device may be
unnecessary if the worker does not need the data. Therefore, the
goal is to make a system that allows administrators to control
access on both coarse and fine-grained levels (table and row
level), and that is generic enough for multiple usage scenarios.

When a user accesses a table, their actions are restricted based on
the ACLs that have been defined. Access control at the table level
is achieved by defining TableAcl resources consisting of a scope
and a role. A scope defines which users the rule applies to, and the
role defines the kind of access the ACL is granting. For each ACL
whose scope includes a specific user, that user is conferred the
permissions of the role associated with that ACL. That user's
effective permissions, then, are the union of permissions from all
roles which apply to them. Aside from table-level access control,
the access control model also allows for row-level control. This is
achieved through a filterScope property assigned to each row
(initially set to null). Users with filtered access to the table who
fall within the filterScope are able to access the row while users
without permission will not be able to transfer the row to their
mobile device. For example, if the user is a Filtered Reader on the
table, and the row has a filterScope of Default, then the user will
be able to read the row because a) the user has filtered read access
to the table due to their role and b) the Default scope makes the
row accessible to anyone. If, however, the filterScope was set to a

specific user id of some other user, then the example user would
not be able to access the row because they would not fall within
the scope of the filter condition.

6. PERFORMANCE
Data set size limits Tables’s overall performance because of the
time needed to retrieve and render a table. Originally, the table
view was implemented using Android’s TableLayout; however,
the UI was slow for large tables as an object had to be constructed
for each cell, causing the display time to grow with the size of the
table. Therefore, we created our own custom table view that scales
better with varying table sizes. Since we pass large data objects
between Java and WebViews and then render them with
Javascript, this was another area of performance concern. Both of
these aspects of rendering views are critically important because
they affect the user interface and responsiveness of the app.

Obviously, the time it takes to load a table is affected by the size
of the table, comprised of the product of the number of rows and
columns. A two column, one row table takes approximately one
second to load. A 700 row, 60 column table takes less than three
seconds to load, and a 1400 row, 42 column table takes less than
four seconds. Once loaded, the view is highly responsive to being
scrolled and selections can be made immediately because the
computation cost is proportional to what is displayed rather than
the underlying table size. Operations such as queries are still
proportional to the size of the table but are not tied to the display
and rendering. Thus, querying the 1400 row table and restricting
its contents to a single entity takes less than one second.

The two large tables in these tests were constructed from real-
world vaccine cold chain data from a developing country. As
performance is highly variable between mobile devices, these
heuristics are not intended as true benchmarks. They are provided
only to demonstrate that relatively large tables are quite feasibly
managed by the platform. Further, several improvements to
performance are within reach under future revisions, but have not
yet been implemented. In practice, we rarely see larger tables. To
date, none of our motivating use cases have ever required more
than 100K cells (our largest experience is with a master table that
has 1400 rows and 42 columns but with only 100-200 rows being
synchronized to any one client).

As we start to investigate using devices with much larger screens
such as tablets, then we will need to re-measure to determine if
their typically faster processors and memory systems will
compensate for the additional omputation to render the now more
expansive views wth more elements showing at any one time.

Graph and map views are more forgiving in terms of required
performance as they are a shift in view mode for which the user is
prepared to wait an extra second or two. In any case, we are
dependent on others’ code for both. For 1000-2000 data rows,
however, we see responses on the order of 1-2 seconds for graphs
generated by d3. For maps the variability is much higher due to
obtaining the map tiles, however, if the tiles are present in the
cache, performance is similar to the Google Maps app.

To test the performance and scalability of the synchronization
protocol we varied the following parameters: 1) the size of a table
(number of rows) and 2) the number of concurrent accesses to a
single table. Since the server is the center of the synchronization
protocol architecture it is a possible bottleneck in the system,
therefore a multithreaded test harness was created to make HTTP
API calls and load the server. The tests were run using ODK

Aggregate on Google App Engine (Frontend instance class of F1 -
600 MHz and 128MB). To understand how the synchronization
protocol scales with an increasing table size, a test was run
simulating a single user synchronously creating a table, adding a
number of rows to it, performing one update to each row, then
deleting the table. This was performed multiple times for tables
with 10 rows, 100 rows, and 1000 rows.

Figure 5 shows the run times for the table size tests while Figure 6
shows the counts of different database operations. Both the run
time and total database operations grew linearly with the table
size, which makes sense because adding or updating a row should
be an approximately constant time operation. This means that the
scalability of the dataset size, in the case of a single user, is
mostly determined by what the underlying database can handle.

Figure 5: Run times (ms) for table size tests.

The second aspect of the synchronization protocol we tested was
to see if it scales with concurrent access to the same table. In this
test, a number of users were simulated trying to concurrently put
five rows each into the same master table. Since the whole table
must be locked on each update, this creates a lot of contention for
the lock. On App Engine, requests are only allowed to take a
certain amount of time, between about 30 and 60 seconds, and
because of this, the simulated users' requests often timed out
waiting for the lock. Therefore a simple exponential back-off
scheme was used to retry each request until it was successful. This
test was run with 1, 10, 20, 30, 40, and 100 simulated users.
Figure 7 shows the run time scaled close to linearly as the number
of users increased.

Figure 6: Database operation counts for table size tests.

After about 30 concurrent users the number of lock and request
timeouts was fairly high, to the point where it would be noticeable
to a user trying to synchronize with the server. However, if the
user does not request an immediate sync and instead lets the
synchronization process on run in the background at the discretion
of the Tables application then it should remain unnoticeable.
Overall, the synchronization protocol met the scalability as it was
able to handle thousands of rows and hundreds of phones sharing
a single table. For hundreds of mobile devices accessing a single
table, performance depends on how many concurrent updates to a
table are expected. In a deployment of five hundred phones there
may only be ten simultaneous updates to the same table except
possibly immediately after a service outage as everyone’s device
may try to synchronize within a small time window. In the
multiple concurrent users tests, ten simultaneous updates were
resolved within 10 seconds. The test included the time to create
and delete the table, so the real time would be a bit shorter.
However, because of the table lock on each update, the
synchronization protocol does not perform as well for highly
concurrent access. Recent changes to the Google AppEngine API
make this much less of a concern as the API is changing to avoid
the need for these large grain-size locks. We do not believe this
will be an issue for virtually all use cases but it is something to
consider during deployment scale-up.

Figure 7: Run times (ms) for multiple concurrent users tests.

7. DISCUSSION AND FUTURE WORK
Building information systems in developing regions can be
challenging because of the limited and diverse infrastructure
available in different deployment areas. Tables aims to make it
easier to build information systems that bring together different
elements of technology by trying to provide a simple common
format to represent data: a row in a table. A single row expression
is easier to interact with over SMS than a structured document
(e.g. XML, JSON) because hierarchy and nesting are not a
concern and can easily be transformed into many export formats
(e.g., CSV). A simple row is also generally easier for a human to
visually parse.

Tables aims to present interoperability interfaces so that other
specialized phone apps can be easily developed to modify data
managed by Tables. Currently, Tables connects to ODK Collect
(the XForm-based data collection tool of Open Data Kit), enabling
new data to be entered in a structured survey/form-based
interaction. Tables connects to ODK Aggregate (the database
storage component of Open Data Kit) enabling data to be moved
to cloud servers for backup and/or forwarded to other services,

including synchronization with other mobile devices. Tables
provides a local copy of cloud data on a mobile phone network
opening up data access to a large number of users who only have
access to basic SMS phones. This allows Tables to provide
services that can be accessed from the cheapest and most common
phones with the server running on a specialized mobile device
(e.g, smartphone) rather than a web server.

Tables builds upon the existing ODK tool suite by enabling
organizations to better customize the deployment model based on
their resources and personnel. While Tables has lowered some
barriers to creating information systems, there are still a number
of challenges that are related to understanding user intent. Tables
is written using conventional programming languages (e.g., Java,
SQL) that rely on getting the exact syntax correct. Although the
user interface minimizes some of these constraints, there are still
times where it could become an issue. For example, because the
custom HTML views and table and column settings are edited
separately, it is possible for the two to become inconsistent based
on user error. For example, if a custom item view accesses the
value in a column called “refrigerator_id”, and the user changes
that column's display name to “fridge_id”, the custom view will
stop working. Additionally, Tables was designed by native
English speakers and only offers an English user interface. It also
uses American standards for date and time formatting and
includes English words as syntax (for instance, “now” is
recognized as input for date columns). In future versions, Tables
will be 1) easy for a user to express their intentions but not overly
strict on syntax mistakes and 2) multilingual and multicultural.

Additionally, a user’s ability to conform to a specific syntax for
SMS messages or table queries is likely to be an obstacle to using
SMS for querying and adding rows. Our earlier work focused on
this usage model for a previous version of Tables [14]. Rigid
formats for short messages have often been problematic for on-
the-ground users. For example, despite regular tweets about the
syntax, a video explaining it, and a web-based tool for building
tweets that conformed to the syntax, the Tweak the Tweet tool for
disaster relief saw little use from the on-the-ground users for
whom it was intended [21]. While Tables allows users to specify
their own formats, which can be specific to the context and more
natural, SMS messages for Tables still must match those formats
exactly. It would be beneficial for the SMS parser to tolerate some
variation, such as a typo in a column name. We also need to
improve the error messages generated by Tables after receiving an
invalid message. Additionally, the SMS interface permits only one
operation per message, which might be cost prohibitive for large
amounts of data.

8. CONCLUSION
With smartphones rapidly gaining adoption in the developing
world there is more potential for new ways to leverage technology
in ICTD work. ODK Tables occupies a design point between
spreadsheets and relational databases, borrowing the best elements
of each and omitting more general features that would lead to a
complex user interface. It is aimed to help organizations that need
to have customized information applications in contexts that
necessitate a workforce with more limited technical knowledge.

ODK Tables presents a user interface optimized for the smaller
screens of mobile devices, and provides customization capabilities
for users to easily configure the app for their use case. Users can
explore their tabular data through a variety of views enabled by a
collection of HTML/JavaScript files thus making customization
easy and flexible without requiring recompilation. ODK Tables

enables users to enter and curate tabular data on Android devices
and allows for expression of relations between datasets enabling
cross-indexed data. Tables’s performance results show it is well
suited for scenarios with moderately sized datasets and
deployments.

A key feature of smartphone applications in the developed world
is synchronization of data between a backend server and one or
more mobile devices. ODK Tables supports a simple
synchronization scheme so that the data tables can be kept
synchronized across a distributed workforce and backed up on
cloud servers. The synchronization protocol, built on existing
ODK tools, allows for sharing and synchronizing tables of data
between mobile devices. The conflict resolution scheme was
designed to involve the user in reconciling conflicts, since the user
usually understands the semantics of the conflict and can more
easily and accurately resolve it.

ODK Tables is designed to be a flexible information services
solution for a variety of use cases including logistics management,
public health, and environment monitoring where previously
collected data is often revisited and updated. To determine a
general set of requirements and the common features needed for
Tables we analyzed five representative developing world use
cases. The flexibility it provides for accessing and rendering data
creates a platform that organizations can extend to implement
customized information services for a variety of use cases.

9. ACKNOWLEDGMENTS
We gratefully acknowledge the support of Google Research, NSF
Grant No. IIS-1111433, and an NSF Graduate Research
Fellowship under Grant No. DGE-0718124. Nathan Brandes,
Chris Gelon, YoonSung Hong, June Lee, and Heidi So made
important contributions to the Tables code base. In addition to
contributing to the project, Mitch Sundt provided invaluable
coordination and supervision.

REFERENCES
[1] R. Anderson, J. Lloyd, and S. Newland. “Software for national level

vaccine cold chain management.” In Proc. of the Fifth International
Conference on Information and Communication Technologies and
Development (ICTD '12).

[2] R.E. Anderson, A. Poon, C. Lustig, W. Brunette, G. Borriello, B.E.
Kolko. "Building a transportation information system using only
GPS and basic SMS infrastructure," In Proc of Information and
Communication Technologies & Development (ICTD 09), Apr 2009

[3] Atom Syndication Format. http://www.ietf.org/rfc/rfc4287.txt

[4] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P.
Yalagandula, and J. Zheng. “PRACTI replication,” In Proc. of the
3rd conference on Networked Systems Design& Implementation -
Volume 3 (NSDI'06).

[5] R. Chaudhri, G. Borriello, R. Anderson, S. McGuire, E. O'Rourke.
“FoneAstra: Enabling Remote Monitoring of Vaccine Cold-Chains
Using Commodity Mobile Phones”, ACM 1st Annual Symposium on
Computing for Development (DEV ‘10), Dec 2010.

[6] J. Chen, L. Subramanian, and E. Brewer. “SMS-Based Web Search
for Lowend Mobile Devices”. In Proceedings of the 1st ACM
workshop on Networking, systems, and applications for mobile
handhelds (MobiHeld '09). Sept 2010. 20-24.

[7] ChildCount. http://www.childcount.org/.

[8] B. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and R.
Ramakrishnan. “Mobius: unified messaging and data serving for
mobile apps.” In Proc. of the 10th Int .Conference on Mobile
systems, applications, and services (MobiSys '12).

[9] CouchDB. http://couchdb.apache.org/

[10] Dropbox. https://www.dropbox.com/

[11] FrontlineSMS. http://www.frontlinesms.com/

[12] Google Fusion Table. http://www.google.com/fusiontables/Home/

[13] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng, G.
Borriello. “Open Data Kit: Building Information Services for
Developing Regions.” In Proc. of 4th IEEE/ACM Information &
Communication Technologies for Development (ICTD 10), Dec
2010.

[14] Y. Hong, H. Worden, G. Borriello. ODK Tables: Data Organization
and Information Services on a Smartphone. 5th ACM Workshop on
Networked Systems for Developing Regions (with MobiSys'11),
Bethesda, MD, June, 2011.

[15] J. J. Kistler and M. Satyanarayanan. “Disconnected operation in the
Coda File System.” ACM Trans. Comput. Syst. 10, 1 (February
1992), 3-25.

[16] W. Lu, M. Tierney, J. Chen, F. Kazi, A. Hubard, J. G. Pasquel, L.
Subramanian, and B. Rao. “Uju: SMS-Based Applications Made
Easy.” ACM 1st Annual Symposium on Computing for
Development (DEV), Dec 2010. 17-18.

[17] OAuth. http://oauth.net/2/

[18] Oracle Database Mobile Server.
http://www.oracle.com/technetwork/products/database-mobile-
server/overview/index.html

[19] RapidAndroid, http://www.rapidsms.org/overview/projects/rapid-
android/

[20] RapidSMS, http://www.rapidsms.org/

[21] K. Starbird and L. Palen. “'Voluntweeters': Self-Organizing by
Digital Volunteers in Times of Crisis.” In Proceedings of Human
factors in Computing systems (CHI '11), May 2011.

[22] Tablecast. http://tablecast.org/

[23] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. 1995. “Managing update conflicts in
Bayou, a weakly connected replicated storage system.” In
Proceedings of the fifteenth ACM symposium on Operating systems
principles (SOSP '95).

[24] R. Veeraaghavan, N. Yasodhar, and K. Toyama. “Warana Unwired:
Replacing PCs with Mobile Phones in a Rural Sugarcane
Cooperative”, 2nd International Conference on ICTD, 2007.

[25] d3js. http://d3js.org/

[26] Open Data Kit. http://opendatakit.org/

