
Open Data Kit Sensors: A Sensor Integration Framework
for Android at the Application-Level
Waylon Brunette, Rita Sodt, Rohit Chaudhri, Mayank Goel,

Michael Falcone, Jaylen VanOrden, Gaetano Borriello
Department of Computer Science & Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350

{wrb, rsodt, rohitc, mayank, mfalcone, dutchsct, gaetano}@cse.uw.edu

ABSTRACT
Smartphones can now connect to a variety of external sensors
over wired and wireless channels. However, ensuring proper
device interaction can be burdensome, especially when a single
application needs to integrate with a number of sensors using
different communication channels and data formats. This paper
presents a framework to simplify the interface between a variety
of external sensors and consumer Android devices. The
framework simplifies both application and driver development
with abstractions that separate responsibilities between the user
application, sensor framework, and device driver. These
abstractions facilitate a componentized framework that allows
developers to focus on writing minimal pieces of sensor-specific
code enabling an ecosystem of reusable sensor drivers. The paper
explores three alternative architectures for application-level
drivers to understand trade-offs in performance, device
portability, simplicity, and deployment ease. We explore these
tradeoffs in the context of four sensing applications designed to
support our work in the developing world. They highlight a range
of sensor usage models for our application-level driver framework
that vary data types, configuration methods, communication
channels, and sampling rates to demonstrate the framework’s
effectiveness.

Categories and Subject Descriptors
D.2.11 Software Architectures

General Terms
Design, Experimentation, Performance

Keywords
Mobile computing, drivers, smartphones, ICTD, sensing,
Bluetooth, USB, Open Data Kit.

1. INTRODUCTION
Market penetration of smartphones as a computing and
communications platform has increased significantly in recent
years. Basic feature phones are gradually being replaced by
relatively inexpensive smartphones in developing countries. For
example, in Kenya the Android based Huawei Ideos is sold for
approximately USD 80[27]. Researchers and practitioners in the
information and communication technologies for development
(ICTD) community are increasingly leveraging smartphones to
improve information management in under-resourced
environments. Our work is motivated by the platform shift from
traditional PCs and standalone sensing appliances to mobile
devices (e.g., smartphones, tablets) coupled with cloud services to
create mobile information systems. There is an unprecedented
opportunity to integrate consumer mobile devices with external
sensors enabling the collection of data directly on these devices.
However, unlike traditional personal computing devices, the new
consumer devices are locked by service providers or
manufacturers, and most end-users do not have the administrative
rights, technical ability, or organizational capacity to modify or
customize the operating system. As a result, relying on
conventional in-kernel device driver frameworks to integrate
external sensors with consumer smartphones is impractical. Our
project explores ways to package software so that non-technical
users can access external sensors from a locked mobile device
running a stock version of the Android operating system. The
framework assumes the consumer device is ‘locked down’ and an
end-user only has the skills to install applications from a standard
app marketplace such as Google Play (Google’s Android app
store).

The ICTD community has begun investigating using phone-based
sensing to perform in-situ and remote monitoring [3, 5, 9]. Even
though capturing sensor data directly eliminates many of the
errors that plague traditional data collection techniques, such as
manual form-filling, it is still not widely used in developing
regions because of the high level of technical expertise required to
develop a mobile sensing application. The technical challenges
include managing the details of different physical communication
channels, processing sensor-specific data, developing a user
interface and designing application control logic. Unfortunately,
this level of expertise is usually not readily available in
developing regions or even in developed regions on projects
undertaken by resource-limited organizations (such as non-profits
and community groups). Because of these complications, we
hypothesize that including sensors in mobile data collection poses
several technical barriers that, if reduced, would enable more
applications to leverage sensors for data collection across varied
domains. The Open Data Kit (ODK) Sensors framework aims to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06...$10.00.

351

lower these barriers by simplifying the deployment of smartphone
applications that use external sensors. More specifically, the goal
of this work is four-fold:

1. Create a modular framework for adding new sensors by
abstracting away management of discovery, communication
channels, and data buffers. Integrating a new sensor should
require adding only its data handling and configuration
primitives.

2. Provide a high-degree of isolation between applications and
sensor-specific code. Applications should continue to
function even if sensor-specific code is buggy or a sensor
becomes inoperative.

3. Understand the tradeoffs of several architectural approaches,
especially modularity and performance.

4. Facilitate the integration of new sensors into applications by
making it possible to download new sensor capabilities from
an application market rather than requiring modifications to
the OS configuration.

The ODK Sensors framework provides a single sensing interface
for both built-in and external sensors. Having a single interface is
appropriate for lightly trained technical workers because it hides a
large number of the details involved in developing sensing
applications. The framework also provides a simple, high-
performing, and flexible abstraction on which to develop and
deploy user-level device drivers on Android. While a device
driver abstraction is a standard concept, the framework includes
features that make development of device drivers easier by
handling sensor state (e.g., connection, buffered data, threading)
and only requiring driver developers to implement sensor-specific
commands and data processing. To evaluate and demonstrate the
efficacy of the framework we implemented four applications that
are exemplars of different classes of sensor data collection. Three
of these applications were previously deployed in developing
regions and were ported to the framework leading to significant
code simplifications. We discuss these applications and how they
leverage the ODK Sensors framework in detail in our previous
work [4]. Here we use the applications to demonstrate the benefits
of the ODK Sensors framework and compare their minimum
performance requirements to the framework’s throughput.

This paper examines the architectural implications of three
alternative framework architectures that utilize different inter-
process communication mechanisms. By comparing peak
throughput across the: three framework versions, communication
channels, and applications, we show that framework throughput is
not the limiting factor of the sensing system. Therefore, our
design choices are biased towards making it easier to create
mobile sensing applications by focusing on how programming and
deployment barriers can be reduced rather than on the relatively
small differences in performance.

2. ODK and ODK SENSORS
Open Data Kit (ODK) [11] is a successful suite of mobile tools
that exploit the rich interaction and high-performance computing
capabilities of smartphones to improve information collection,
distribution, and decision-support. ODK focuses on deployment
contexts where conventional computing solutions (i.e., informed
by concerns of the developed world) are often inappropriate due
to constraints such as affordability, infrastructure, institutional
capacity, and technical support. ODK Sensors expands ODK by
creating a framework to ease the augmentation of a mobile
consumer device with sensing capabilities. The ODK Sensors
framework supports a variety of external sensors that vary by the

type of data they collect, the communication channel over which
they interact with the smartphone, and the rate at which they
generate data. It provides a unified interface for sensing on
Android devices by combining both built-in and external sensors
into a single interface. While this design maximizes the variety of
sensors available through a uniform interface, the gains in ease of
development are more significant for external sensors as more
programming is required to interface these as compared to built-in
sensors. ODK Sensors focuses on ease-of-use, in general, with a
particular focus on appropriateness to our target contexts.

The framework reduces the complexity of building sensor-based
mobile applications by providing abstractions that encapsulate
communication channels in addition to delineating user-
application functionality from sensor communication. The
framework has three constituencies: Application Users,
Application Developers, and Sensor Driver Developers. A typical
Application User is assumed to be the least technically proficient
of the three and is only expected to be able to use applications on
an Android device. An Application Developer is expected to
know how to create new Android applications (design UIs and
implement application domain logic), but is not expected to have
detailed knowledge of the specifics of sensor control or how the
sensors represent and communicate their data. A Sensor Driver
Developer is the only constituent expected to understand the low-
level protocol used by a specific sensor for configuration and data
packaging, but is not expected to deal with communication
channel setup or multiplexing. The delineation of application
logic from framework logic leads to a clean separation of
developer roles and allows an application developer to focus on
higher-level application specific concepts while a driver developer
focuses on creating sensor-specific drivers.

The goal of the ODK Sensors project is to shift as much
responsibility as possible to the framework developers to simplify
the creation of sensing application while maintaining a high-level
of flexibility for integrating new sensor types. By creating a
framework to isolate these three development roles we hope to
make it easier to create sensing applications by isolating
development tasks that can be fulfilled independently by people
with the appropriate levels of technical skill. To encourage new
driver development, the framework assumes as much
responsibility as possible for aspects common to many sensors,
including management of connection state and threads.
Additionally, decomposing the system into modules enables more
effective testing and code reuse, thereby improving overall system
robustness which is particularly important for ICTD deployment
settings (since once a system is deployed in remote locations
updating it in the field becomes logistically difficult in terms of
costs, time, and complexity).

For the framework to successfully enable an ecosystem of
external sensors it must be:

1. easy to create sensor drivers, that is, minimizing the
knowledge and amount of code required to create a driver,

2. easy to integrate/reuse external sensors in a wide variety of
applications,

3. easy to deploy the framework and device drivers, shielding
an end user from the technical details of the sensing
infrastructure,

4. easy to upgrade the framework and sensor drivers,
5. hard for bad driver code to damage the framework since

Sensor Driver Developers may not be expert Android
developers,

352

6. easy for an Application User to discover available sensors
through a streamlined user interface, and

7. easy to manage communication channel details such as
proper handling of dropped connections.

ODK Sensors attempts to meet all the above requirements by
creating an environment of reusable components for the
development of mobile sensing applications.

3. RELATED WORK
The variety and number of mobile applications has increased due
to the popularity of smartphones and app stores. Despite this
proliferation, there are still only a limited number of applications
that make use of external sensing devices. This is in part due to
the programming challenges of implementing communication
between smartphones and external sensors and in part due to
resource constraints that prevent adoption of these applications in
under-resourced environments. This leads to two main areas of
research: (1) reducing programming barriers [8, 21] and (2)
making mobile sensing applications more efficient [22, 23, 26,
29]. Within these two areas, some related work focuses on on-
device sensors, while other work seeks to expand communication
to sensors not built into the phone itself. There is also a significant
body of research in device driver design that examines tradeoffs
of reliability, ease of use, and performance with user-level versus
kernel-level drivers or a combination of the two [10, 17, 19, 20,
24, 25].

The concept of user-level drivers (or application-level) is not new;
the L3 system incorporated user-level drivers in 1988 [20]. Leslie
et al. [19] built user-level device drivers into Linux without
significant performance degradation, even for high-bandwidth
devices such as Ethernet, by implementing a framework that used
shared data structures, batched work, and optimized event
notification. Microdrivers [10] developed a program to split
existing drivers into kernel-level and user-level parts by leaving
critical path code in the kernel (e.g. data handling, I/O) and
moving the rest of the driver code to a user-mode process.
Similarly, Decaf Drivers [24] implemented ways to convert Linux
kernel drivers to Java programs running in user mode. These
systems demonstrated good performance, despite not using native
kernel drivers. While ODK Sensors was influenced by these
projects, it focuses on creating user-level drivers for locked
consumer devices running Android. Therefore, unlike these
projects we do not alter the kernel to provide the communication
link between the OS and the user-level driver. Instead, ODK
Sensors’ communication managers run as user-level threads and
use Android’s APIs to handle sending and receiving data from the
sensor and then forward the bytes to the appropriate device driver
for processing.

The migration towards user-level drivers is in part motivated by
the desire to make systems more fault tolerant and reliable in the
face of driver-error. Maverick [25], a web-based system, provides
security by using device drivers and frameworks that run as user-
level web applications to support interacting with multiple USB
devices. Alternatively, Carburizer [16] detects and tolerates
interrupt-related bugs to proactively manage device failures for
improved reliability in the presence of faulty devices. Like
Maverick, ODK Sensors leverages user-level drivers to provide
reliability and security; however, ODK Sensors runs each driver
as a separate application causing each driver to be isolated in its
own virtual machine.

Other frameworks similar to ODK Sensors have been proposed,
but they seek to interface primarily with built-in sensors. Zhuang
et al. [29] introduced an adaptive location-sensing framework that

improves the energy efficiency of location-based applications
through suppression or substitution of location requests from
built-in GPS sensors. It seeks to increase energy efficiency of the
system, which differs from our goal of lowering programming
barriers.

Dandelion [21] supports building applications distributed across a
Maemo Linux smartphone and wireless body sensors by providing
abstractions that shield application developers from hardware
specific code. Dandelion envisions a scenario where sensor
vendors provide a runtime to enable a platform-agnostic
programming abstraction called a ‘senselet’ written by application
developers to run on the sensor itself. The ODK Sensors
framework also shields application developers from sensor-
specific hardware; however, the framework provides abstractions
at a different level as sensor drivers execute on the smartphone
and leverage the framework’s communication channel
abstractions and sensor state management. The initial processing
of sensor data occurs on the Android device in the sensor driver
(removing this concern from the scope of application developers),
whereas Dandelion requires data processing in the ‘senselet’ on
the sensor that must be written by the application developer in this
limited sensor environment. Additionally, ODK Sensors does not
require sensor vendors to include a runtime enabling the
framework to support any standard sensor that communicates via
a supported communication channel. The Reflex [22] project (a
fork of Dandelion) is a suite of runtime and compilation
techniques that conceals the heterogeneous distributed nature of
the system and reduces power consumption by offloading data
processing to lower-power co-processors. While Reflex focuses
on energy efficiency and performance in mobile-sensing
applications, ODK Sensors focuses on lowering programming
barriers for application developers and supporting different data
and application types. The ODK Sensors driver executes within
the framework rather than on a separate co-processor. LittleRock
[23] and Turducken [26] have similar goals as Reflex, and present
other architectures that offload continuous sensor data processing
to dedicated low-power processors.

Gadgeteer [28] is a rapid prototyping platform that eases
development with embedded hardware devices through the use of
modular hardware components and object-oriented programming
in C#. While Gadgeteer and ODK Sensors are both focused on
making it easier for users to integrate with different external
sensors, Gadgeteer achieves this by simplifying how different
hardware pieces talk to each other, whereas ODK Sensors aims to
make it easy for the mobile application developer to leverage a
variety of sensors in their application without significant
programming knowledge about the specific sensor.

IOIO [15] is a development board designed to work with Android
phones through a USB connection. It abstracts the communication
between external hardware and software running on the
smartphone, enabling Android applications to directly control
hardware attached to the IOIO board. It is different from ODK
Sensors because IOIO provides an abstraction to Android
applications at the level of I/O pins of the IOIO board. ODK
Sensors currently interfaces with Arduino boards to enable low-
power sensing, by decoupling the interface board from the
Android application. An independently operating sensor board
enables sensing to occur at lower power allowing the Android
device to remain in a sleep state longer. Amarino [18] is another
toolkit that connects Android phones with Arduino
microcontrollers via Bluetooth. It helps developers in easily
sending information about phone’s internal events such as phone
calls, SMSs, and on-device sensor data over Bluetooth. It is

353

similar to the IOIO Board but with communication over Bluetooth
rather than USB.

AndWellness [12] lets researchers customize surveys to collect
data from sensors on phones carried by study participants. It
shares our framework’s goal of lowering barriers for building
sensing applications. However, unlike ODK Sensors, this
application focuses primarily on customizing surveys and front-
end visualizations of real-time data. Our work aims to lower
barriers for the application and sensor driver developer and in the
future interface with applications such as ODK Collect [11] or
ODK Tables [13], which will help make it easier to develop
information services directly by end-users.

PRISM [8], like ODK Sensors, is sensing application middleware
whose aim is to provide reusable components and eliminate
redundant efforts regarding distributed operation, security and
privacy. PRISM has been evaluated for a variety of applications,
all of which interface exclusively with sensors built into the
phone. PRISM also has a focus on deploying these applications at
scale. In contrast, our framework focuses on interaction with
external sensors by abstracting away the communication layer to
make programming easier.

These related projects address many problems that are common to
mobile sensing applications. We aim to further lower
development barriers by simplifying the process of connecting a
smartphone to an external sensor through the creation of a
framework with tailored abstractions that facilitate the integration
of new and varied types of sensor data into mobile applications.

4. FRAMEWORK
The ODK Sensors framework simplifies the development of
sensor-based mobile applications by creating a common
abstraction point that enables all sensors to be accessed through a
unified interface. Creating a single-interface reduces complexity
since all external sensors as well as Android’s built-in sensors are
exposed through a common interface regardless of the
communication medium used. The interface encapsulates
communication and delineates user-application code from sensor-
specific driver code, freeing application developers from
understanding the specifics of the underlying communication
between an Android device and an external sensor. From a user’s
perspective the overall architecture for ODK Sensors consists of
three apps: the User-Application App, the ODK Sensors
Framework App, and the Sensor Driver Apps. For the purposes of
this paper an Android application (software downloaded from a
market) is referred to as an “app”, whereas the word “application”
is used to refer to usage/deployment examples. The ODK Sensors
Framework App is responsible for managing low-level, channel-
specific communications and providing abstractions to isolate
sensor driver code. The User-Application App communicates with
sensors through the unifying framework API (explained in Section
4.1). Figure 1 shows an end-user view of ODK Sensors on a
smartphone. In the figure, two apps (User-Application App and
ODK Sensors Framework App), a USB Bridge, and a temperature
probe are used to monitor the flash heat pasteurization of milk to
eliminate contaminants (e.g. HIV) in breast milk (described in
section 5).

We chose Android as the target platform for the ODK Sensors
framework because it is open source and has extensive support for
background processes and includes several built-in constructs for
inter-application communication (IPC) between Android
Applications. Examples these Android constructs are detailed in
Table 1. For instance, a Broadcast Receiver uses non-blocking
message passing to communicate between applications; whereas,

a Service construct communicates through a blocking inter-
process communication mechanism. The ODK Sensors
framework uses the Android Interface Definition Language
(AIDL) to specify the programming interface that both the client
and service use to communicate. From the AIDL, Android
generates IPC code to decompose objects into primitives that the
operating system can marshal as parcels across process
boundaries to provide blocking IPC functionality. These
constructs enable a comparison between a single-threaded
asynchronous model (Broadcast Receiver) and a multi-threaded
synchronous model (Service) for inter-application communication.
Additionally, Android supports multiple communication APIs that
facilitate connecting to a wide variety of external sensors. While
APIs for Bluetooth and Wi-Fi radios have long been available on
Android devices, only recently has Android added USB support
through the Android Accessory Protocol (AAP) [1] enabling
compliant devices to connect to external hardware over USB. The
AAP requires the external device to act as the USB Master while
the Android device is the Slave. To include a wide variety of
external sensors in the framework, we utilize a USB Bridge to
connect sensors that use diverse digital I/O protocols (e.g. I2C,
SPI) to the phone’s USB port via an interface board. For our
initial prototype, we used an Arduino board [2] to act as the USB
Bridge.

Figure 1: End-user view of a smartphone using the ODK
Sensors framework to connect to a temperature sensor via an
Arduino USB Bridge for the milk pasteurization application
(Section 5 describes the application). The Application and
Framework are Android apps that are installed on the mobile
device (A). The mobile device is connected to an Arduino
interfacing board (B) over USB; forming a USB Bridge to the
temperature sensor (C) using the Arduino board’s I/O ports
(B). The Application uses the Framework to get data from the
temperature sensor over USB using the ODK Sensors API.

354

Table 1: List of Android constructs used in the three
framework implementations. The constructs listed are used
for application metadata, packaging, storing, or sending data
between applications and forming the basis of inter-process
communication with sensor drivers in V2 and V3 (Section 4.2)

Android
Construct

Description

Service Services run in main thread of hosting process.
Requests from other processes are handled
concurrently by a threadpool.

Broadcast
Receiver

Asynchronous broadcast receiver. Receives
broadcasts sent via Intents from other
processes.

Intent Asynchronous messages that represent an
operation to be performed, such as broadcasts,
start services, start application, etc.

Bundle Mapping from String values to parcel-able
types. A parcel is a data container used for IPC.

Manifest Provides essential information about the
application (permissions, package name, etc.) to
the Android OS.

Content
Provider

Stores and retrieves data that is accessible by all
applications.

The ODK Sensors framework (shown in Figure 2) presents a
common interface to all top-level user applications via the Service
Interface and Content Provider. User-Application apps only need
to implement the application-specific logic that handles processed
sensor data received from the framework. For each call to the
service, the Sensor Manager dispatches the commands to the
appropriate sensor object that, in turn, utilizes a sensor driver to
perform specific low-level tasks. The framework supports
multiple communication modalities by providing abstractions
called Channel Managers that encapsulate complexities specific
to each communication channel. ODK Sensors supports multiple
data types, sample sizes, sampling frequencies, and sensor
configurations by utilizing Sensor Driver abstractions that
encapsulate sensor-specific data processing. These abstractions
enable applications to interface with sensors using higher-level
key-value pair constructs that are not constrained to be fixed-size
arrays or values of a specific type. This enables developers to
focus on the application logic instead of sensor-specific logic.

The framework’s communication subsystems provide abstractions
for lower-level, channel-specific communication protocols that
make it easier for a driver developer to interface with an external
sensor. The framework encapsulates communication channel
specifics within the respective channel managers to hide them
from application and sensor driver developers. For instance,
Bluetooth-enabled sensors need to be discovered and paired with
the smartphone and a socket needs to be set up for
communication. ODK Sensors automatically manages this entire
process for the application developer. The current implementation
supports communications over Bluetooth and USB; in the future,
we plan to add additional channel managers to support other
communication methods such as NFC and Wi-Fi. To create a
single unified sensing interface, the ODK Sensors framework also
exposes all 11 built-in Android sensors (for Android 2.3 and
greater) creating a single integration point for sensing.

A Sensor Driver handles the particular messaging protocol that
configures and/or requests data from an external sensor by issuing
commands to the appropriate Channel Manager. During data
collection, the Communication Manager passes all raw data
received from the sensor to the appropriate sensor driver via the
Sensor Manager. Sensor drivers receive and process data encoded
in formats specific to their respective sensors and generate
configuration commands as required by the sensor. The sensor
driver parses this sensor-specific data, transforming it into key-
value pairs that can be easily consumed by top-level user
applications. Likewise, the sensor’s configuration parameters are
specified as key-value pairs by user applications and passed to the
appropriate Sensor Driver by the Sensor Manager. The driver
encodes these key-value pairs according to the sensor’s messaging
protocol and the encoded data is sent to the sensor via the Channel
Manager. By having channel managers handle communication
details, the driver developer no longer needs to be aware of
channel-specific protocols. Instead they can simply implement the
interface described in Section 4.2 and convert raw sensor data
coming from the communication channel into key-value pairs and
vice versa for sensor configuration data.

In addition to allowing for easy reuse, the Sensor Driver design
shields applications from changes in the communication protocol,
configuration, or data type. Shielding applications from driver or
channel changes leads to more robust systems that are easier to
maintain. The sensor driver abstraction also enables multiple apps
to interface with the same type of sensor by reusing an existing
Sensor Driver. The framework’s sensor drivers are designed as
stateless processors of data to shield driver developers from tasks
required to enable interaction with multiple identical sensors
simultaneously (e.g., channel management, threads, buffers).

Figure 2: Architecture overview of ODK Sensors system.
Sensor Manager maintains references to all sensors and the
corresponding sensor drivers. Channel Managers manage the
connections over the communication channels (e.g., USB,
Bluetooth). The Service Interface and Content Provider
provide the access point for applications to interact with the
framework. Note: All architectures use the same data flows;
however, in V2 and V3 sensor drivers move to separate apps
as described in Section 4.2.

355

To better understand which Android IPC constructs to use to
create our application-level (or user-level) sensor driver
framework we implemented three different versions of the
framework. The Sensor Manager and Channel Managers
communicate with sensor drivers either with method calls inside
the framework (V1), with IPCs through a Service Interface (V2),
or with broadcasts to Broadcast Receivers (V3). To establish a
baseline to compare against, version ‘V1’ of the framework was
created as a single app. The device drivers in the framework are
stateless processors of data, thus allowing the driver programmer
to keep code simple by avoiding managing multiple sensors
within the driver or having to run multiple apps for each sensor
type. The details of the interfaces presented to developers and
framework’s communication subsystems are discussed in the
following subsections.

4.1 Framework Interface
The ODK Sensors framework interface abstracts many sensor
specific details and does not expose any channel specifics. The
Service Interface creates a common interface for user applications
to leverage both built-in sensors and external sensors connected
over the communication channels through methods shown in the
following code snippet:

interface ODKSensorService {
boolean sensorConnect(in String id, boolean
 useContentProvider);
void configure(in String id, in Bundle config);
boolean startSensor(in String id);
boolean stopSensor(in String id);
List<Bundle> getSensorData(in String id, long
 maxNumReadings);

 boolean isConnected(in String id);
 boolean isBusy(in String id);
 boolean hasSensor(in String id);
}

The Service Interface requires the sensor’s ID to control a specific
sensor in the framework. If applications do not know the Sensor
ID, then the framework provides an interactive discovery process
for users, freeing the application from implementing their own
sensor discovery interface. To launch the ODK Sensors
interactive sensor discovery UI, the application simply sends an
Intent to the framework as described in Section 4.2.4. Once the
application has the sensor ID, it can connect to the sensor and
begin retrieving sensor data by periodically calling the
getSensorData method of the Service Interface. This method
returns sensor readings to the application in a mapping of key-
value pairs created by the Sensor Driver processing raw sensor
data. As an example, a temperature sensor’s driver parses data
according to the messaging protocol of the sensor to extract
multiple (or single) temperature readings in degrees Celsius and
passes a list of Android bundles that map key = “temperature” to
value = “value in °C” to the application. The framework expects
the application to retrieve data in a timely fashion to clear the
memory that is buffering the data. In cases where the application
does not plan to read the data immediately, the framework
provides applications a second mechanism for retrieving sensor
data stored in a local database through a Content Provider.
Applications specify whether the framework should put the data
in a database to be accessed by a Content Provider when calling
sensorConnect. An application can query the Content Provider
whenever it wants to get data from a sensor that the framework
considers owned by the application.

Figure 3: The three different framework implementations that
vary with respect to how the framework communicates with
the sensor drivers. Each dark rectangle represents a separate
application. The design in which the drivers live within the
framework is referred to as V1. The V2 design uses remote
service calls to communicate with separate driver apps outside
the framework. V3 uses system broadcasts to communicate
with these separate driver apps.

4.2 Sensor Drivers
Sensor drivers are designed to abstract sensor specific control
code from more general sensor management code. Certain
concepts are common to all sensors, such as initialization,
configuration, and taking readings, but the framework does not
need to, nor should it know, specifically, how each sensor
accomplishes these tasks. Sensor drivers enable the framework to
communicate with sensors while maintaining the necessary
abstractions that keep the framework modular and extensible. The
same driver interface is used for all sensors – both built-in and
external sensors – as the driver interface abstraction encapsulates
sensor-specific data transfer and processing, and hides sensor
specifics such as data types, frequency of collection, data size, and
various configuration parameters. The driver abstractions enable
the framework to reuse core functionality such as sensor
configuration, connection, communication handshakes, buffering
data, multiplexing, etc. for multiple types of applications.
Simultaneous integration of different sensors involves complex
tasks such as concurrent Bluetooth and USB setup that requires
multiple data sockets and threads to buffer and process the data
from these connections. The framework hides these complexities
thereby significantly simplifying the job of both the application-
level developer and the sensor driver developer.

Moving sensor drivers into separate Android apps that implement
a common driver interface improves the framework modularity
and extensibility. Separating drivers from the framework enables
drivers for new sensors to be downloaded and installed onto an
Android device from any Android marketplace or website like any
other Android app. To understand the various architectural trade-
offs of moving sensor drivers to external Android apps, three
different framework architectures were created to compare two
different Android IPC mechanisms. As depicted in Figure 3, one
design keeps sensor drivers within the framework (V1) serving as
a baseline and two designs move each driver to its own external
Android app (V2 & V3). To understand the best way to
communicate with the external drivers one framework used a
blocking Binder IPC call (V2) while the other used a non-
blocking message passing structure (V3). Both of these versions
enable end-users to dynamically add drivers to the ODK Sensors

356

framework as needed. User applications remained the same across
the three implementations, as their interface with the framework
did not change. In each of the three framework implementations
every driver must implement the following interface:

public interface Driver {
byte[] configureCmd(Bundle config);
byte[] getSensorDataCmd();
SensorDataParseResponse getSensorData(long
 maxNumReadings, List<SensorDataPacket>
 rawSensorData, byte [] remainingData);
byte[] startCmd();
byte[] stopCmd();

}

Drivers implement this interface to specify how to parse raw
sensor data and what, if any, sensor-specific messages to send for
configuration, getting data, and starting or stopping the sensor.
The device drivers in the framework are stateless processors of
data, which means the programmer does not need to manage
multiple sensor instances. Methods such as getSensorData
require the sensor driver to maintain access to buffered data it has
previously processed as well as the raw data from the sensor it has
not yet processed. To facilitate this getSensorData returns a
SensorDataParseResponse which is simply a list of key-value
pairs that have been fully parsed as well as any leftover bytes
from the input stream. We eliminate state from the driver itself
and instead have the framework handle all sensor state, including
buffered data, and provide it to the driver at the appropriate time
when the application has requested data. Implementing an
external sensor driver for each of the three architectures is slightly
different as described in the following subsections. In the case of
the built-in sensors, their drivers are included with the framework
even though it is possible to implement them as separate apps
since communication is handled internally by the Android OS.
The commands are Android-specific, not communication channel
specific so it seems unnecessary to move them outside of the
framework.

4.2.1 V1: Drivers within the Framework
In the first version, V1, we place all the sensor drivers inside the
framework thus creating a single Android app. At runtime, the
framework accesses individual sensor drivers from an in-memory
map. In this architecture, the drivers, by executing within the
framework, create a tight coupling that should have the best
performance and provide a baseline against which to compare the
other versions. However, this design is not ideal for our target
users to dynamically add new drivers as it requires a
recompilation or the use of a class loader. Using a class loader is
not ideal for a population of non-technical users because it
requires placing files into proper access-controlled directories on
the device, thereby enabling the framework to dynamically load
classes. Our goal is to build a system that uses established
Android distribution and communication mechanisms to
dynamically deliver and add drivers to the framework.

4.2.2 V2: Driver Communication via Services
The V2 version of the framework creates separate Android apps
for each sensor driver. Each of these Apps implements an Android
Service that defines the Driver Interface using AIDL, enabling
the framework to communicate with the sensor driver via
Android’s Binder IPC. Android provides an AIDL to define the
programming interface between the client and server and
automatically generates stub Binder IPC classes. When the client
calls these methods, the system copies the payload from the client

into kernel memory, which is memory-mapped into the server's
address space. The server-side procedure then handles the call.
The sensor driver application includes driver-specific metadata
that is used by the framework for driver discovery (described in
Section 4.2.4). If an appropriate driver application is installed on
the device, a generic sensor object is constructed to act as a proxy
between the driver and framework by binding to the Driver
interface that is presented as an Android Service. The framework
maintains a reference to the specified generic sensor object that
communicates with the driver using Android’s Binder IPC. Each
driver proxy acts as a thin wrapper for the driver and contains a
reference to the appropriate channel manager. Communication
with the sensor forwards commands returned from the driver so
that they are transmitted over the appropriate channel. Since the
driver application can be reused by multiple instances of the same
type of sensor it is important that it be stateless. Therefore, the
driver’s remote function calls are designed to transfer the required
state to the driver on each service call and allow the driver to
return state information along with the parsed data. An example of
state information stored by the framework is the excess bytes from
the input data stream, enabling buffering of the input stream until
enough data is received to parse and produce a full message.

4.2.3 V3: Driver Communication via Broadcasts
The third and final version of the framework, V3, also implements
sensor drivers as separate Android applications but uses message
passing with Broadcast Receivers for IPC (instead of synchronous
blocking IPC). Each driver specifies a unique broadcast address
that is discovered by the framework during the driver discovery
phase (described in Section 4.2.4). The framework communicates
with the driver by sending messages to the driver’s unique
broadcast address. Included in the broadcast message sent to the
driver is a unique broadcast address for the driver to use to send a
response back to the framework. The additional information
included in each of the Intents (i.e. the data exchanged) is part of
the API between the framework and drivers. By instantiating a
broadcast receiver for each instance of a sensor, the framework
can multiplex responses for each individual sensor. This API
provides the same functionality as the interface implemented by
sensor drivers in V1 and V2. Similarly as for V2, the driver does
not maintain state, allowing the driver application to be reused by
multiple instances of the same sensor type. The message passing
interface is designed to communicate state between the framework
and the sensor driver, enabling the sensor driver to cache
incomplete information between processing sensor readings.

This architecture decouples the drivers from the thread of control
allowing for a non-blocking message passing framework but
incurs the overhead of using Android Broadcasts for data
communication. The framework is better shielded from buggy
drivers due to the decoupling enabled by the blocking semantics.
However, we acknowledge that broadcasts can be intercepted by
another Android application, which is a security risk. This will be
addressed in future work by encrypting data sent between
different processes.

4.2.4 Sensor & Driver Discovery
Each version of the framework semi-automates the sensor
discovery process by providing a pre-built UI that application
developers can launch when they need the user to select one of the
currently available sensors. When the framework gets a request
for an unknown sensor, it informs the user’s application to launch
the framework’s built-in sensor discovery system to find and pair
the appropriate device driver for the desired sensor. The user
simply needs to select the sensor along with the corresponding

357

driver from the list presented. The framework displays a list of
available drivers for the relevant communication channel, as well
as a list of sensors that are already physically connected to or in
Bluetooth wireless range of the device. In V2 and V3, the
framework automatically discovers installed driver applications
by searching Android manifest files. Once the user has mapped
the sensor with the appropriate sensor driver the framework will
do the rest. After the user selects the sensor they want to use, the
ID is returned to the application. This ID enables the application
to control the sensor with the methods presented in the ODK
Sensors Service Interface. Once a sensor has been discovered it is
stored in the Sensor Manager database enabling the application to
skip the discovery step in the future.

An advantage of having sensor drivers as separate applications is
that it simplifies driver distribution. Ideally, we envision a
scenario where manufacturers post their drivers on their own
website or on an Android market (such as Google Play). By taking
advantage of Google’s standard application distribution system
the framework is designed to lower barriers for novice users by
using familiar application delivery channels. Additionally, if the
device manufacturer needs to update their driver they simply need
to post the updated application to market and the built-in Android
application update system will take care of the rest. Another
advantage of separating the device drivers into separate Android
apps is it gives manufacturers who want to keep their protocols
proprietary an opportunity to create drivers that can be easily used
to create applications while protecting their protocols.

5. APPLICATIONS
We developed a few example applications to demonstrate reuse,
flexibility, and extensibility of the framework. These applications
exemplify the three basic dimensions of variation in sensing
applications: communication channel, sensor configuration, and
data collection style; all of which must be supported flexibly by
the framework. First, the channel used to communicate with the
phone can vary across sensors and applications (e.g., USB,
Bluetooth, NFC). Second, sensors have different configuration
requirements, which may include various parameters or settings
that need to be specified such as sampling rate, trigger conditions
or alerts, identifiers, and calibration. Third, the data needed by an
application can change in format, size, and frequency of
collection. The framework aims to support any combination of
communication, configuration, and data type transfer between
phone and sensor. A top-level user application retains the same
interaction with a sensor driver in the framework even if there are
changes in communication protocol, configuration, or data type.
In the event of such changes, the sensor driver only requires
minimal adjustments for parsing a new type of data or specifying
a new channel manager.

Developing these applications for the ODK Sensors framework
helped to evaluate whether we could reuse the provided
abstractions for different use cases, verifying the framework and
sensor driver’s interfaces. The applications exercise both the
wired and wireless subsystems of the framework and, in our
experience, are exemplary of the four commonly used modes of
data collection in sensor-based systems (Table 2):

 Single Reading: The user requests data from the sensor and
chooses to record data points by taking a single reading from a
real time stream of data. A clinician’s application that connects
tools (e.g., blood pressure, pulse oxymetry) to a phone is an
example of this use case.

 Real-Time Time-Series: The user of a data collection node has
an active session with the sensor and observes a stream of
samples from the sensor in real-time. Monitoring the
temperature curve of the milk pasteurization procedure [7] is an
example of this use case. The temperature curve is also saved
so that it can be reviewed later.

 Snapshot Time-Series: Sensors are deployed to autonomously
monitor certain phenomena. They aggregate readings internally
over a period of time and may report some to a remote location
periodically (e.g., alert to detect a specific condition).
Temperature and electrical current sensors deployed to monitor
vaccine refrigerators are examples of this use case [5].

 Historical Time-Series: Sensors are deployed to autonomously
monitor certain phenomena (e.g., movement of an object such
as a water can over a period of months). However, unlike a
Snapshot Time-Series, data retrieval is not automatic and
requires someone to be within range of the sensor to offload the
sensor’s stored data. The WaterTime monitoring [6] application
exemplifies this approach and is dependent on field calibration
for configuring the sensor with sampling rates and identifiers.

Table 2: Variations in the sample sensing applications.

Application Comm. Channel Configuration Data Style

Medical Bluetooth Calibrate Single Reading
MilkBank USB Sampling Rate Real-Time

Time-Series
Vaccine USB Alerts

Sampling Rate
Snapshot Size

Snapshot
Time-Series

WaterTime Bluetooth Identifier
Calibrate

Historical
Time-Series

Three of these applications have already been deployed in
developing regions as part of pilot studies. Rewriting these
applications to leverage the ODK Sensors framework has
simplified them significantly by separating out the application
specific logic from the communication logic. Figure 4 shows how
these applications interact within the V1 framework.

Figure 4: Example instance of V1 framework architecture
incorporating the four applications discussed.

358

6. EXPERIMENTS
The experiments were designed to explore the tradeoffs between
the three frameworks in terms of performance, power
consumption, and ease of programming. Each of the architectures
was benchmarked based on the same set of applications, sensor
drivers, and communication channels. The code of the framework
and drivers is identical for V1, V2, and V3 with the exception of
the protocol the framework uses to communicate with sensor
drivers. The protocol changes required four Java files to be
different. User applications were not affected across the three
implementations, as their interface with the framework did not
change.

6.1 Performance
Performance experiments were conducted using several different
Android devices to understand the impact of hardware variability.
The Samsung Galaxy Tab and Samsung Nexus S were used to
represent high-tier Android devices, the HTC Nexus One and
Motorola Droid were used to represent mid-tier devices, and the
Huawei IDEOS was used to represent low-tier Android devices
likely to be common in developing regions. An Arduino
Mega2560 with USB Host capability connected to a Motorola
Xoom tablet was used to characterize the USB Bridge.

6.1.1 Sensor Application Throughput
First we measured the throughput of the four real-world
applications described in Section 5. Each test consisted of 60
seconds of continuous data collection. The results in Table 3 show
that the rate at which a sensor application gets sensor data is often
on the order of one sample every 1 to 2 seconds. In fact, three out
of four of the applications collect a data sample no more than
twice per second; this rate is actually limited by the sensor itself.
The Vaccine and MilkBank applications use a digital temperature
sensor that requires a 750ms delay in sampling the ADC, while
the heart rate sensor used in the Medical application transmits a
packet every 2 seconds. The framework throughput is
substantially higher than the saturation point for these three
applications. However, in the WaterTime application, which
requires a one-time bulk reading of historical data, the sensor
sends its collected data as fast as possible over Bluetooth and
achieves a throughput of 51 packets per second. This is close to
the maximum throughput achieved on the Bluetooth channel using
the framework (see Table 4).

Table 3: Observed data throughput from sensor to application
on four real-world applications. Packet size is not consistent
across applications as the size of data samples varies.

Application Throughput (pkts/sec)
WaterTime (Bluetooth) 51.0
Medical (Bluetooth) 1.5
Vaccine (USB) 1.0
MilkBank (USB) 1.0

6.1.2 Communication Channel Throughput
Next, we systematically tested the saturation point of the
Bluetooth and USB communication channels with a stress test that
sent fake data as fast as possible over the channels. To do this we
programmed a “spammer” sensor on two Arduino
microprocessors; one that emulates a Bluetooth-based sensor and
another that emulates a USB-based sensor. Each “spammer”
sensor reacts to a “start” signal by executing a loop to send 1 byte
data packets as fast as possible until it receives a “stop” signal. In
our tests we allowed the “spammer” sensor to send a rapid,
constant stream of data for ten minutes on each of our three

framework architectures on Bluetooth and on USB. The
maximum throughput that could be achieved with full saturation
of the communication channels is shown in Table 4.

Table 4: Throughput (pkts/sec) on Bluetooth & USB Channels

Framework Bluetooth USB
Drivers in Framework 58.0 42.5
Drivers w/ Service 58.7 41.5
Drivers w/ Broadcasts 49.0 42.0

The throughput results were surprising as the USB channel had
lower throughput than the Bluetooth channel. Investigating this
issue further revealed that the USB Host driver on the Arduino
adds some delays that impact the channel performance. We found
that increasing the payload size did not significantly reduce the
packets per second rate. After increasing the message size to 1KB
per packet and disabling our reliability system, the USB Bridge
gave a channel bandwidth of over 40KB per second. We found
that increasing the payload size beyond 1KB was problematic and
was primarily limited by the Arduino’s memory size. This is
acceptable for now because our real-world USB applications
require throughput that is significantly lower than what we can
already achieve with our current USB Bridge. However, in the
future, we will explore alternative options for the USB Bridge to
achieve higher performance to support more demanding sensing
applications, such as those streaming high-resolution camera data.

6.1.3 Framework Throughput
Finally, we evaluated the performance of each framework by
establishing an emulated communication channel for fake sensors
to use with varying send rates and packet sizes. These
experiments tested the throughput of the three framework versions
by eliminating the limits imposed by real communication
channels. For a baseline understanding, we evaluated the
framework’s throughput by varying packet size and the delay
between packets (Table 5). To understand the effects of multiple
sensors, we ran tests that varied the number of sensors that
communicated simultaneously through the framework (Table 6).
Finally, we verified that the framework’s performance did not
significantly degrade when operating on different classes of
Android devices (high-tier, mid-tier and low-tier) (Table 7). This
is important because users in developing regions will likely have a
diverse set of devices.

We measured framework throughput (packets/second) by sending
data at varying rates with varying sizes as shown in Table 5. The
test results reported the number of packets received on average
per second for each of the frameworks V1, V2, and V3 on a
Nexus One. Each test ran for three minutes on five different
Nexus One phones. The results of the tests were averaged. The
send delay values began at 1ms and were increased by doubling
the delay to a max of 128ms, while the packet size started at 1
byte and was increased by an order of magnitude for each test up
to a maximum of 100,000 bytes. We varied these parameters to
understand any limiting factors inherent to the different IPC
mechanisms. Differences in performance of the various
architectures become negligible as the send delay becomes the
dominant limiting factor. None of the three frameworks were able
to complete the most strenuous tests of 100,000 byte packets
being sent with only a 1ms delay because of memory errors
invalidating the results (indicated by “Error” in the table).
Generally speaking, the throughput values of the framework are
similar since the cycles spent in IPC are a small part of the total
framework execution time. In the cases where the send delay was
not the dominant factor, V1 appeared to perform the best since it

359

Table 5: Throughput results (pkts/sec) for a Nexus One when
varying the packet size and inter-packet generation delay for
the three framework versions. The top section of the table
contains V1 results, the middle section contains V2 results,
and the bottom section contains V3 results. The ‘Error’ value
indicates a test run was unable to be completed because of a
memory error. The Max column contains the theoretical
maximum throughput.

V1
(bytes)

1 10 100 1K 10K 100K Max

(ms) 1 798.1 796.9 790.2 747.9 Error Error 1000.0
2 441.0 440.8 438.9 423.6 Error Error 500.0
4 234.6 234.5 234.8 229.6 Error Error 250.0
8 121.4 121.4 121.3 119.7 111.5 Error 125.0

16 61.6 61.6 61.5 60.9 58.1 Error 62.5
32 31.0 31.0 31.0 30.9 30.1 Error 31.3
64 15.5 15.5 15.5 15.5 15.3 13.8 15.6

128 7.8 7.8 7.8 7.8 7.7 7.3 7.8

V2
(bytes)

1 10 100 1K 10K 100K Max

(ms) 1 785.5 786.8 781.1 Error Error Error 1000.0
2 437.6 438.0 436.0 421.8 Error Error 500.0
4 233.7 233.8 233.0 229.0 Error Error 250.0
8 120.6 120.6 120.3 119.6 Error Error 125.0

16 61.4 61.4 61.3 61.0 58.8 Error 62.5
32 31.0 31.0 31.0 30.9 30.1 Error 31.3
64 15.5 15.5 15.5 15.5 15.3 Error 15.6

128 7.8 7.8 7.8 7.8 7.7 7.3 7.8

V3
(bytes)

1 10 100 1K 10K 100K Max

(ms) 1 771.5 768.0 760.5 Error Error Error 1000.0
2 432.2 431.5 426.5 419.2 Error Error 500.0
4 231.9 231.9 231.2 225.2 Error Error 250.0
8 119.2 119.1 119.2 118.4 Error Error 125.0

16 60.9 60.8 60.8 60.4 Error Error 62.5
32 30.8 30.9 30.8 30.7 30.1 Error 31.3
64 15.5 15.5 15.5 15.4 15.3 Error 15.6

128 7.7 7.7 7.7 7.7 7.7 Error 7.8

does not incur any IPC overhead; whereas, V3 had lower
performance since it communicates with drivers uses message-
passing.

The primary difference between V2 and V3 is the IPC method.
Our results confirm our expectation that the broadcast intent
system has more overhead than a synchronous Binder IPC call.
This finding correlates with other research that showed the
Android system implements the Intent call as two IPC-style calls
– one from the sender to the system and one from the system to
the receiver [14]. While the ‘double call’ for V3 causes slower
performance, the broadcast communication is still only a small
amount of the overall work. Therefore, while the effects are
visible, they are generally negligible except at faster data
generation rates. Our results also matched the findings that there
is a drop-off in performance for large packets. The Android
system allocates a default kernel-side buffer 4kB in size for each
process that will receive data from Binder IPC calls. When the
payload size exceeds 4KB, the system allocates an additional,
temporary buffer to transfer the data. These larger IPC calls incur
additional allocation overhead and were shown to be inefficient as
the Android system memory-maps each additional page
separately, instead of mapping them all at once [14]. These factors
result in a drop-off in performance for payload sizes over 4KB,
which is reflected in our results for packets 10KB bytes or larger.

To compare how framework throughput (packets/second) changes
when multiple sensors are simultaneously generating data, we ran
tests with multiple fake sensors generating 100 byte data packets
every 64ms. In this test case, the drivers simply copy the

incoming bytes into a parsed sensor reading. The results in Table
6 show that the frameworks perform close to the theoretical max
when there are a few sensors running simultaneously. Differences
in framework throughput start to emerge as the number of sensors
increases. However, we consider 12 sensors to be adequate for all
the realistic applications we have considered to date.

Table 6: Framework throughput (pkts/sec) of multiple sensors
sending 100 byte packets every 64ms on a Nexus One

Num Sensors V1 V2 V3 Max
6 93.3 93.2 93.1 93.8
12 186.5 186.4 185.6 187.5
24 371.9 371.8 365.8 375.0
48 737.6 735.2 686.4 750.0

To understand how performance would change on various
Android platforms, we measured V2’s performance on a few
different models of Android devices. Similar to the tests for Table
6, we used 100 byte packets sent every 64ms and varied the
number of sensors simultaneously moving data through the driver.
As expected, the high-end devices (Samsung Nexus S and Galaxy
Tab) had the best performance while the IDEOS had the lowest
performance with 48 sensors concurrently running. Overall, the
throughput of the V2 framework for 12 sensors is similar across
the four devices, confirming that the framework should be
portable to a variety of Android devices. While the results
presented in Table 7 show all of the devices were able to support
multiple sensors with a send rate of 1 packet every 64ms, other
tests showed that faster send rates eventually caused errors on all
devices. Devices with smaller amounts of RAM and smaller
default heap sizes seemed to have more issues. For instance, when
delay between packets was reduced to 32ms the IDEOS
experienced out of memory errors with 48 sensors, while the
Nexus S did not experience errors until 96 sensors were
simultaneously sending data. Again, only minor differences were
seen when considering realistic numbers of sensors.

Table 7: Throughput (pkts/sec) of V2 framework on different
Android devices (100 byte packets sent every 64ms)

Num
Sensors

Galaxy
Tab

Nexus S

Droid

IDEOS

3 46.4 46.6 44.4 46.3
6 92.8 93.2 92.1 92.2
12 185.0 186.2 184.0 183.8
24 368.6 372.5 366.4 360.6
48 733.7 741.0 720.4 677.4

6.2 Power
The power consumption of each of the three frameworks is
negligible with respect to the power use of a device with active
Bluetooth or an illuminated screen. We ran 12-hour tests where
each framework processed 100 packets/second on a Nexus One.
At the beginning of each test, the battery was charged to 100%
and each test resulted in an approximate 3% drain of the battery.
In these tests, the screen, Bluetooth, Wi-Fi, and cellular radios
were off and the only applications running were the battery
monitoring application and the sensor framework. These tests
show there were only negligible differences between the
frameworks with regards to power consumption for expected
operating conditions. The tests also show that the power
consumption of the framework is negligible in comparison to
other phone components.

360

6.3 Ease of Use/Programming
The ODK Sensors framework provides a reusable code base that
makes it easier to create sensing applications by providing a
common interface for all sensors (both built-in and external) that
abstracts sensor communication details. By decomposing a
sensing application into discrete and reusable building blocks, we
enable a plug-and-play capability where users with different
technical skill levels can contribute in different ways. The system
is designed to leverage app marketplaces, which provide a
standard interface for users to find and download a variety of
applications, making it easy to enhance their Android device to
use external sensors. Both application users and developers can
leverage marketplaces for distributing and locating sensing
applications and sensor drivers that can be reused for a variety of
mobile-sensing needs. An application user who wants to collect
data from sensors can simply download the ODK Sensors
framework, a sensing application (written by an application
developer) and the sensor driver(s) (written by driver developers)
that corresponds to the sensor(s) they require. An application
developer can re-use any existing sensor driver, allowing them to
write a sensing application by simply downloading the appropriate
driver and interacting with it using the framework’s interface. A
driver developer’s responsibilities are limited to implementing the
sensor-specific communication requirements (e.g. configuration,
start/stop commands, etc.). The driver developer can focus on the
sensor-specific issues and ignore communication channel
specifics of the various wired and wireless channels. A final
measure of ease of programming is that the system is portable. In
ODK Sensors, all Android devices are interchangeable within the
framework as long as the requisite apps and drivers have been
installed.

6.3.1 Application User
The application user is expected to be able to obtain and use basic
Android applications. To make device driver distribution easy, the
drivers in V2 and V3 are designed to be separate applications
enabling device manufacturers to post them on their website or an
Android marketplace. By using marketplaces such as Google
Play, manufacturers take advantage of Android’s application
distribution system making it easy for users to find and keep their
driver updated as the user’s device will automatically receive
updates (similar to Windows and Mac updates). The framework
tries to minimize the work of the end-user by semi-automating the
sensor discovery process. The framework automatically discovers
all installed sensor drivers on the Android device and populates a
list of available devices on each communication channel. The user
simply selects the sensing device and is prompted with a filtered
list of possible corresponding drivers. The framework’s interface
also guides the user through any channel-specific pairing tasks
(such as on Bluetooth) required to interact with the sensor.

6.3.2 Application Developer
The framework simplifies the application developer’s role by
providing a single interface to communicate with all external and
built-in sensors. This significantly reduces the number of
software packages an application developer needs to understand
and use in order to communicate with multiple types of sensors
over varied communication channels. To further minimize
developer responsibilities, ODK Sensors provides a base class for
application developers that encapsulates the calls to framework’s
Service Interface to further simplify development by removing the
need for the developer to understand Android IPC specifics.
Additionally, the framework reduces application developer
responsibilities by providing a sensor discovery and driver

detection user interface. If an application needs the user to
discover a sensor it can send an Intent to ODK Sensors to launch
the framework’s discovery UI. The UI guides the user through
sensor discovery, pairing, registering, and driver selection then
returns the selected sensor ID to the application, thus eliminating
the need for the application developer to re-implement common
functionality. If necessary, a specialized user interface could be
developed, but at higher development cost.

To quantify the simplification of development we ported four
existing standalone sensing applications to leverage the ODK
Sensors framework (Section 5). The reduction in the lines of code
(summarized in Table 8) in the ported applications provides a
basic measure of how development was simplified. We expect
standalone applications to have larger codebases because they
must implement additional logic to manage communications and
handle sensor-specific data parsing.

Table 8: Compares the lines of code needed to create a
standalone sensing application vs. an application that uses the
ODK Sensors framework. The Sensor Driver column reports
the lines of code in the framework’s sensor drivers.

Application Standalone
App

App using
Framework

Sensor
Driver

WaterTime 1350 956 139
Medical 933 246 80
MilkBank 1325 316 105
Built-in Accelerometer 546 538 29

The ported applications leverage the framework for channel and
connection management, while sensor-specific data processing is
delegated to sensor drivers. Table 9 shows the additional Android
modules needed to implement a standalone application that
interacts with sensors over Bluetooth, while Table 10 shows the
Android modules needed to communicate with a sensor over a
USB Bridge. Developers leveraging the ODK Sensors interface do
not need to understand these Android constructs as the framework
hides the internals of these modules from application developers.

Table 9: Additional modules used in a Bluetooth-based
sensing application written without using ODK Sensors.

Module Purpose
Permissions Allow access to Bluetooth in Manifest
Bluetooth
Adapter

Perform fundamental Bluetooth tasks like device
discovery and creation of BluetoothDevice and
BluetoothServerSocket

Bluetooth
Device

Representation of Bluetooth device to create a
connection or query information from it

Bluetooth
ServerSocket

Listen for connections and create BluetoothSocket
to manage the connection

Bluetooth
Socket

RFCOMM socket like a TCP socket to allow
streaming transport over Bluetooth

InputStream For input to BluetoothSocket

OutputStream For output from BluetoothSocket
IOException Deal with exception on I/O from BluetoothSocket
UUID Used to initiate an RFCOMM communication
UI
Components

To make a UI that will allow a user to discover,
pair and connect with a device

Handler To receive updates from a Bluetooth I/O thread
Message Contains data to be sent and handled with the

Handler described above when Bluetooth device
state changes or data is read / written.

IntentFilter Used with BroadcastReceiver

Broadcast
Receiver

Listen on BluetoothDevice state changes for when
a device is discovered

361

Table 10: Additional modules used in a USB-based sensing
application written without using ODK Sensors.

Module Purpose
Permissions Set up application to use USB in Manifest
UsbAccessory Allows you to enumerate and communicate

with connected USB accessories
UsbManager Represents a USB accessory and contains

methods to access its identifying information
ParcelFile-
Descriptor

Descriptor that can be passed between
processes.

FileDescriptor Descriptor that can be passed between
processes.

IOException Deal with I/O error from USB
FileInputStream Read from USB
FileOutputStream Write to USB
PendingIntent Intents that can be passed to and run by

another application.
IntentFilter Used with BroadcastReceiver
Broadcast
Receiver

Used to discover when a USB accessory has
been attached

6.3.3 Sensor Driver Developer
The framework shields device driver developers from tasks
required for the app to interact with multiple sensors, such as
management of channels, threads, buffers, and sensor states. The
device drivers in the framework are designed to be stateless
processors of data enabling the developer to keep their code
simple. A slightly more experienced developer will need to be
responsible for the sensor driver implementation because they will
need to interpret sensor data sheets to determine how to manage
sensor-specific communications, configuration parameters, and
data formats. Table 8 lists how many lines of code were needed to
create drivers for the application-specific sensors discussed in
Section 5. To make driver implementation simple, driver
developers can use a base class provided by the framework
development team to handle the communication between the
driver and the framework. Since the communication version
information is contained within the provided base class, the
framework will automatically communicate via the correct
protocol when discovering the driver, thereby enabling drivers
with varying versions of communication base classes to exist
simultaneously on the same Android device. This eliminates the
requirement of upgrading all driver applications to the newer
protocol version simultaneously to updating the framework.
Additionally, upgrading the driver to the latest framework
communication protocol should be as simple as swapping in the
latest binary containing the base class (assuming no changes to the
driver interface functions). Driver developers also benefit from
the framework’s system design of deploying drivers through an
Android marketplace. When a device manufacturer updates their
driver, they simply need to post the updated application to market
and the built-in Android application update system will push out
the update to devices that previously installed the driver
application.

7. DISCUSSION & FUTURE WORK
To build the next generation of information systems for
developing regions, tools are needed to simplify the creation of
mobile sensing applications. Barriers to connecting external
sensors to mobile devices need to be reduced to enable a wide
range of developers with varying programming skills to easily
leverage external sensors. While the technical skills required to
create and deploy mobile sensing applications are not uncommon
in technically astute developer communities, in developing

regions the lack of educational resources and technical expertise
creates barriers to the development of sensing applications. ODK
Sensors’ single abstraction for both built-in and external sensors
helps developers with basic Android coding skills by reducing the
number of Android constructs a developer needs to understand.
Additionally, the framework’s interface creates a clean separation
point between application code and sensor-specific code. This
decoupling naturally lends itself to a reusable framework where
sensor-specific code is placed into modular drivers. Thus, driver
developers can keep their code simple acting as a stateless
processor of data. This modular approach also enables different
brands/models of sensors to be easily changed by replacing
drivers without necessarily requiring application code changes. To
further simplify development, the framework provides abstract
base classes to make connecting to the framework easier by
handling all the inter-process communication. Providing abstract
base classes enables easy upgrades to both applications and
drivers because the framework developers handle any protocol
changes within the base class. The long-term goal of the
framework is to enable a market of reusable application
components and drivers that can be easily integrated by non-
technical users to create sensor-based applications. Deploying
mobile sensing applications in under-resourced environments is
also challenging because in many circumstances the end-user will
likely need to load the sensing software onto consumer devices
that may be locked by their service providers. Therefore, for ODK
Sensors to be easily deployable by end-users with limited
technical abilities the framework and user-level drivers need to fit
in Android’s app distribution model.

The concept of user-level drivers is well studied and known to
have many advantages such as ease of development, portability,
and maintainability, but generally suffers in terms of performance.
The experiments in Section 6 show the performance of all three
frameworks is adequate compared to overall system throughput as
limited by the communication channels (Bluetooth and USB).
Since framework performance does not significantly impact the
system, other factors that lower programming and deployment
barriers quickly become more important when choosing the
optimal framework architecture. One advantage of the V2 and V3
design is the separation of sensor drivers from the framework thus
providing a sandbox environment to minimize any negative
effects of misbehaving third-party driver code from the
framework. In this respect, V2 and V3 are better framework
choices because sensor drivers are isolated as separate Android
apps and run in their own virtual machines (VMs). A
disadvantage of V2’s design is its IPC mechanism acts as a
blocking call that can be potentially dangerous if the driver causes
the framework to block forever. However, since each sensor is
isolated in its own framework thread, the effect of a misbehaving
driver on the framework will be minimal as the framework can
handle such drivers with a timeout or exception. The main
disadvantage to the V3 design is that it is inherently less secure
than V2. As any program can register to receive broadcasts
making it easy for rogue programs to eavesdrop or inject data.
This security problem could be addressed by encrypting data sent
between the different processes; however, V3 has other
limitations such as timing issues caused by the fact that broadcast
messages cannot be received until after the framework’s onCreate
method completes. This method is called when an application
binds to the ODK Sensors framework; however, during
construction no communication between drivers and framework is
possible until after construction is complete because no messages
can yet be received by the framework. Unfortunately, once

362

framework construction completes, applications are capable of
sending messages to sensors before the framework’s driver
connections are properly established causing timing issues.

With sensors becoming increasingly popular on mobile devices,
the possibility of multiple applications simultaneously leveraging
the same sensor arises and leads to contention for sensor control.
Problems can occur when different applications using the same
sensor issue conflicting start and stop commands. Additionally, it
becomes more difficult for the sensor framework to know how
long it should keep a copy of the sensed data cached so that it can
deliver the data to all waiting applications. For example, if two
applications are simultaneously polling a temperature sensor at
different rates, then the framework must maintain data until both
applications receive their copy. However, this can be challenging
if one application decides it no longer wants the data and sends a
stop command while the other application is still waiting. There is
a need for techniques to resolve conflicts in resource sharing,
leader selection, resource ownership, etc. Currently, the
framework avoids these issues by only allowing one application at
a time to own an external sensor. In the future, we plan to explore
models for electing a ‘leader’ application based on the application
that is most dependent on the current stream of data and would be
adversely affected by changes to the sensor.

We also plan to continue to simplify sensor integration by
expanding the types of sensors that can be connected to the ODK
Sensors framework through a USB Bridge by including support
for a variety of interfacing boards (e.g. IOIO, Phidgets).
Additionally, as Android devices with USB Master or USB On-
The-Go become common, we plan to enhance the USB Manager
to act both as a USB Slave and USB Master. We are also working
on channel managers to manage access to the new class of NFC-
enabled low-power sensors that will soon be available.

8. CONCLUSION
The platform shift from traditional PCs to mobile devices with
cloud services creates a need and opportunity to integrate these
devices (e.g., smartphones, tablets) with external sensors and
deploy applications in new settings. To address this, we created an
application-level driver framework that enables convenient reuse
of sensor-specific code between applications by logically
separating the high-level application from the underlying sensor
driver. The focus of ODK Sensors is on enabling the integration
of data from a variety of sensors over both wired and wireless
communication channels. It simplifies application development by
creating a single interface that can control virtually any kind of
sensor (both external and built-in) and reduces the amount of code
needed to access a sensor. Applications that leverage the
framework to communicate with external sensors can be
implemented in fewer lines of code (Table 8) by removing sensor
communication code - on the order of ten fewer Android Java
modules (Tables 9 and 10). Additionally, the sensor framework
automatically multiplexes the communication channels allowing
different types of sensors to be used simultaneously by an
application. For example, an application can easily use two USB
and three Bluetooth sensors simultaneously to record several
phenomena at once. The ODK Sensors framework is designed to
flexibly meet any application’s needs regardless of data type, data
collection rate and size, sensor configuration requirements, or
communication channel.

After testing the three framework implementations, it was clear
that performance was not the most important factor to consider
when selecting the final design, as most sensing applications
sample data at a significantly lower rate than the framework’s

maximum throughput. The performance analysis showed that the
system bottleneck is the throughput of the Bluetooth and USB
communication channels rather than framework throughput. Since
the three frameworks performed similarly, other factors were
examined before deciding which is optimal. The V2 framework
offered the best tradeoff in terms of programming ease,
deployment ease, and performance. The separate driver app
design makes it easier for end-users to dynamically add new
drivers and V2 has better performance than V3. Performance may
become more important in the future to accommodate applications
that use high bandwidth sensors such as external cameras for
medical devices.

This work is part of the larger Open Data Kit [11] project that
seeks to develop a modular set of tools to magnify human
resources through appropriately designed technology. One of
ODK’s strengths is creating information systems that collect a
wide variety of data types (e.g., location, images, audio, video,
and barcodes) that are difficult to record on paper forms. By
lowering the barriers to add external sensing components, we
hope to expand mobile data collection applications to include an
even richer set of data types. ODK Sensors increases the variation
of input data types possible by simplifying access to sensing
resources through the creation of a single interface that makes
external sensors as easy to integrate as built-in sensors. By
creating a framework designed to follow ODK’s modular
components philosophy, we aim to expand the tool suite to allow
end-users to easily augment their Android device with external
sensing options. The component philosophy enables easy reuse of
sensor drivers that will hopefully lead to an ecosystem of drivers
further promoting the creation of novel mobile sensing
applications. Using standard Android app distribution channels
(e.g. Google Play) will make it easy for users to download
functionality enhancements (application-level device drivers) to
their unmodified Android OS. This simple method of deployment
will hopefully lead to the creation of new sensing-based mobile
data collection applications that improve information services in
under-resourced contexts that typically lack a rich technology
infrastructure (both physically and in terms of expertise).

9. ACKNOWLEDGMENTS
We thank Steven Gribble for his helpful advice on this project.
We also thank Yaw Anokwa, Brian DeRenzi, and Mitch Sundt for
their insightful feedback on this paper. Finally, we thank our
anonymous reviewers, and our shepherd Landon Cox, for their
guidance. The material in this paper is based upon work supported
by NSF Research Grant No. IIS-1111433 and a NSF Graduate
Research Fellowship under Grant No. DGE-0718124.

10. REFERENCES
[1] Android Open Accessory Development Kit.

http://developer.android.com/guide/topics/usb/adk.html.
Accessed April 2012.

[2] Arduino. http://www.arduino.cc/ Accessed April 2012.

[3] A. Bhardwaj, P. Arjunan, A. Singh, V. Naik, and P. Singh.
MELOS: a low-cost and low-energy generic sensing
attachment for mobile phones. In Proc. of the 5th ACM
Workshop on Networked Systems for Developing Regions,
27-32, June 2011.

[4] R. Chaudhri, W. Brunette, M. Goel, R. Sodt, J. VanOrden,
M. Falcone, and G. Borriello. Open data kit sensors: mobile
data collection with wired and wireless sensors. In Proc. of

363

the 2nd ACM Symposium on Computing for Development,
9:1-10, March 2012.

[5] R. Chaudhri, E. O'Rourke, S. McGuire, G. Borriello, and R.
Anderson. FoneAstra: enabling remote monitoring of vaccine
cold-chains using commodity mobile phones. In Proc. of the
First ACM Symposium on Computing for Development, 14:1-
9, Dec. 2010.

[6] R. Chaudhri, R. Sodt, K. Lieberg, J. Chilton, G. Borriello, J.
Cook, and Y. Masuda. Low-power Sensors and Smartphones
for Tracking Water Collection in Rural Ethiopia. IEEE
Pervasive Computing, (to appear), March 2012.

[7] R. Chaudhri, D. Vlachos, J. Kaza, J. Palludan, N. Bilbao, T.
Martin, G. Borriello, B. Kolko, and K. Israel-Ballard. A
system for safe flash-heat pasteurization of human breast
milk. In Proc. of the 5th ACM Workshop on Networked
Systems for Developing Regions, 9-14, June 2011.

[8] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A.
Sharma. PRISM: platform for remote sensing using
smartphones. In Proc. of the 8th Int. Conf. on Mobile
Systems, Applications, and Services, 63-76, June 2010.

[9] N. Dell, S. Venkatachalam, D. Stevens, P. Yager, and G.
Borriello. Towards a point-of-care diagnostic system:
automated analysis of immunoassay test data on a cell phone.
In Procc of the 5th ACM workshop on Networked Systems for
Developing Regions, 3-8, June 2011.

[10] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of
microdrivers. SIGOPS Operating Systems Review,
42(2):168-178, March 2008.

[11] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng,
and G. Borriello. Open Data Kit: Building Information
Services for Developing Regions. ICTD 2010, Dec. 2010.

[12] J. Hicks, N. Ramanathan, D. Kim, M. Monibi, J. Selsky, M.
Hansen, and D. Estrin. AndWellness: an open mobile system
for activity and experience sampling. Wireless Health 2010,
34-43, Oct. 2010.

[13] Y. Hong, H. K. Worden, and G. Borriello. ODK Tables: data
organization and information services on a smartphone. In
Proc. of the 5th ACM Workshop on Networked Systems for
Developing Regions, 33-38, June 2011.

[14] C. Hsieh, H. Falaki, N. Ramanathan, H. Tangmunarunkit, D.
Estrin. Performance Optimization of Android IPC for
Continuous Sensing Applications. CENS Technical Report
#104. April 2012.

[15] IOIO for Android. Android Development Tools.
http://www.sparkfun.com/products/10748. Accessed April
2012.

[16] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. In Proc. of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
59-72, Oct. 2009.

[17] A. Kadav and M. M. Swift. Understanding modern device
drivers. In Proc. of the 17h Int. Conf. on Architectural
Support for Programming Languages and Operating
Systems, 87-98, March 2012

[18] B. Kaufmann and L. Buechley. Amarino: a toolkit for the
rapid prototyping of mobile ubiquitous computing. In Proc.
of the 12th Int. Conf. on Human Computer Interaction with
Mobile Devices and Services, 291-298, Sept. 2010.

[19] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L.
Macpherson, D. Potts, Y. Shen, K. Elphinstone, and G.
Heiser. User-Level Device Drivers: Achieved Performance.
Journal of Computer Science and Technology, 20(5):654-
664, Sept. 2005.

[20] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland,
and G. Szalay. Two Years of Experience with a (Mu)-Kernel
Based OS. SIGOPS Operating Systems Review, 25(2):51-62,
April 1991.

[21] F. X. Lin, A. Rahmati, and L. Zhong. Dandelion: a
framework for transparently programming phone-centered
wireless body sensor applications for health. Wireless Health
2010, 74-83, Oct. 2010.

[22] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex:
using low-power processors in smartphones without knowing
them. In Proc. of the 17th Int. Conf. on Architectural Support
for Programming Languages and Operating Systems, 13-24,
March 2012.

[23] B. Priyantha, D. Lymberopoulos, and J. Liu. Enabling energy
efficient continuous sensing on mobile phones with
LittleRock. In Proc. of the 9th ACM/IEEE Int. Conf. on
Information Processing in Sensor Networks, 420-421, April
2010.

[24] M. J. Renzelmann and M. M. Swift. Decaf: moving device
drivers to a modern language. In Proc. of the 2009
Conference on USENIX, 14-14, June 2009.

[25] D. W. Richardson and S. D. Gribble. Maverick: providing
web applications with safe and flexible access to local
devices. In Proc. of the 2nd USENIX conference on Web
Application Development, 12-12, Oct. 2011.

[26] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: hierarchical power management for mobile
devices. In Proc. of the 3rd Int. Conf. on Mobile Systems,
Applications, and Services, 261-274, June 2005.

[27] D. Talbot. Android Marches on East Africa. Technology
Review, http://www.technologyreview.com/
communications/37877, June 2011. Accessed April 2012.

[28] N. Villar, J. Scott, and S. Hodges. Prototyping with microsoft
.net gadgeteer. In Proc. of the 5th Int. Conf on Tangible,
Embedded, and Embodied Interaction, 377-380, Jan. 2011.

[29] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving energy
efficiency of location sensing on smartphones. In Proc. of the
8th Int. Con. on Mobile Systems, Applications, and Services,
315-330, June 2010.

364

