
Open Data Kit Sensors:  
Mobile Data Collection with Wired and Wireless Sensors  

Rohit Chaudhri, Waylon Brunette, Mayank Goel, Rita Sodt,  
Jaylen VanOrden, Michael Falcone, Gaetano Borriello 

Department of Computer Science and Engineering 
University of Washington, Seattle, WA [USA] 

{rohitc, wrb, mayank, rsodt, dutchsct, mfalcone, gaetano}@cse.washington.edu 
 
ABSTRACT 
Sensing data is important to a variety of data collection and 
monitoring applications. This paper presents the ODK Sensors 
framework designed to simplify the process of integrating sensors 
into mobile data collection tasks for both programmers and data 
collectors. Current mobile platforms (e.g., smartphones, tablets) 
can connect to a variety of external sensors over wired (USB) and 
wireless (Bluetooth) channels. However, the proper 
implementation can be burdensome, especially when a single 
application needs to support a variety of sensors with different 
communication channels and data formats. Our goal is to provide 
a high level framework that allows for customization and 
flexibility of applications that interface with external sensors, and 
thus support a variety of information services that rely on sensor-
data. We use four application examples to highlight the range of 
usage models and the ease with which the applications can be 
developed. 

Categories and Subject Descriptors 
H.4 [Information Systems Applications]: Miscellaneous; 

General Terms 
Design, Experimentation 

Keywords 
Mobile computing, smart phones, ICTD, sensing, Bluetooth, Open 
Data Kit 

1. INTRODUCTION 
Smartphones are becoming a pervasive computing and 
communications platform, even in developing countries where 
they are gradually replacing the past generation of feature phones. 
These new devices are especially attractive for use in developing 
regions because they are cost effective (as low as $80 as of this 
writing) leading to 350,000 Android phones being sold in Kenya 
during the first six months of 2011 [28]. The ICTD community 
has done a significant amount of work to leverage the improved 
capabilities of smartphones in bringing about an information 
management revolution in developing regions. Efforts by 
researchers like Hartung et al. [15] have utilized the enhanced 
interaction and general computing capabilities of smartphones to 
improve infrastructure for information services. One of the main 
reasons for the success of information systems such as [14, 15, 

23] is their ability to lower technical barriers for non-technical 
users. While these systems have addressed the problem of 
information collection and distribution, they still largely require 
users to manually enter data into phones and do not leverage the 
full range of sensing and communication capabilities of 
increasingly powerful smartphones.  
Recently researchers have begun using on and off-device sensing 
with smartphones to tackle problems that would have been 
difficult to address otherwise [3, 6, 12]. Moreover, Google has 
recently announced the Android Accessory Protocol (AAP) [1] 
that enables compliant phones to connect to external sensors over 
USB. In addition, there are APIs to access the Bluetooth and Wi-
Fi radios on Android devices. These communication APIs allow 
Android devices to connect to an even wider variety of external 
sensors. However, building applications that utilize external 
sensors is relatively complex from the application developers’ 
perspective. In addition to implementing application logic, 
developers have to deal with the properties of different physical 
communication channels and handle sensor-specific data 
processing. These technical barriers can be problematic in 
developing regions where technical human resources capable of 
building such systems are relatively scarce. We hypothesize that 
these technical barriers prevent sensor-based systems from being 
deployed in the developing world at a large scale and across a 
range of application domains. 
The ODK Sensors framework reduces the complexity of building 
sensor-based mobile applications by providing abstractions that 
encapsulate communication channels and by delineating user-
application functionality from sensor communication. By defining 
key abstractions to isolate common functionality, we aim to 
separate development concerns to reduce complexity and to 
simplify the connection of components. The overall goal of this 
work is to determine the appropriate decomposition of a typical 
Android sensing application to enable code reuse and lower 
application development barriers. Decomposing the system into 
modules enables more effective testing and code reuse improving 
overall system robustness, which is particularly important for 
ICTD deployment settings. The delineation of application logic 
from framework logic leads to a cleaner separation of roles, 
enabling an application developer to solely focus on higher-level 
application specific concepts, while a driver developer focuses on 
creating sensor-specific framework drivers to handle sensor-
specific details.  
The framework provides a reusable code base that makes it easier 
to create applications by providing a common interface for all 
sensors. From a user’s perspective, the overall setup for ODK 
Sensors on an Android device consists of two apps: the User-
Application App and the Framework App.  For the purposes of this 
paper an Android application (something you would download 
from market) is referred to using the word “app”, whereas the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
DEV '12, March 11-12, Atlanta, GA 
Copyright © 2012 ACM 978-1-4503-1262-2/12/03... $10.00" 
 



word “application” is used to refer to usage/deployment examples. 
The Framework App is responsible for managing low-level, 
channel-specific communications and providing abstractions to 
isolate sensor driver code. The User-Application App 
communicates with sensors through the unifying framework API. 
For instance, to start a sensor, an app uses a generic framework 
start command to instruct a specific sensor to start collecting data. 
This command is sent to the sensor by the framework over the 
appropriate communication channel. Similarly, when encoded 
data is received from the sensor, the framework forwards it to the 
appropriate driver for decoding and then makes the decoded data 
available to User-Application App.  
Figure 1 shows the overall setup for ODK Sensors on a phone 
with the two apps: the User-Application App and the Framework 
App.  Apart from the setup on the phone, an ODK Sensors 
configuration consists of multiple sensors, potentially connected 
over different channels types (e.g., USB, Bluetooth, etc.). These 
sensors may connect to the phone over a USB Bridge that enables 
the actual physical connection to the phone’s USB port (e.g., an 
Arduino-based interfacing board).  
 

 
Figure 1: End-user view of the overall setup of an ODK 
Sensors system. Application and Framework are Android 
apps that are installed on the mobile device (A). The mobile 
device is connected to an Arduino interfacing board (B) over 
USB. A current sensor (C) is connected to the Arduino 
board’s I/O ports. Application asks Framework to connect to 
and get data from a current sensor and a heart rate sensor 
(D). Framework connects to the current sensor via the 
Arduino USB Bridge and the heart rate sensor over Bluetooth, 
and returns sensor data to the Application. 
 
Consider a scenario where the user wants to track the amount of 
current flowing through a wire. Using ODK Sensors, the user 
needs to have the generic Framework App and a Current 
Monitoring App that provides the user with the visualization of the 
data. The Current Monitoring App simply asks the framework to 
connect to a current sensor and fetch instantaneous readings. It 
does not need to worry about the channel over which the sensor 
communicates. The framework, on the other hand, handles all 
low-level communication with the sensor and channel-specific 
communication protocols. Once the framework receives data back 

from the sensor, it sends the relevant information in a format and 
method specified by the Current Monitoring App. 
This paper presents our work designing the ODK Sensors 
framework to simplify the process of integrating external sensors 
with mobile devices like smartphones and tablets, thus lowering 
barriers for development of mobile sensing applications. To create 
appropriate abstractions we identify three dimensions of variation 
in typical sensing use cases and propose a framework that 
separates development concerns into different roles (Section 2). 
We then validate the framework decomposition by implementing 
four representative mobile sensing applications that vary along 
these three dimensions (Section 3). 

2. FRAMEWORK 
The framework decomposes a typical mobile sensing application 
into reusable modules that encapsulate common functionality. 
This enables development of user apps that focus simply on the 
overall application logic while the responsibility of processing of 
sensor-specific data is transferred to driver developers. To assist 
application developers, the framework provides abstractions to 
simplify the management of low-level, channel-specific 
communications, thus creating a clear separation of concerns for 
developers. The framework was designed for three developer 
roles: 

• an Application Developer who implements top-level user 
applications, 

• a Driver Developer who creates sensor-specific processing 
and control modules, and 

• a Framework Developer who provides the framework itself. 
A list of the various modules/components used in the framework 
is presented in Table 1 along with the type of developer who is 
responsible for implementing the functionality. The goal of the 
ODK Sensors project is to shift as much responsibility as possible 
to the framework developers, simplifying the creation of mobile 
sensing application. Unfortunately, a framework developer cannot 
create a framework that can universally communicate with all 
sensing devices without knowledge of sensor-specific 
instructions; therefore, the role of driver developer is necessary to 
create the ability to add new sensing devices to the framework.  
To encourage new driver development the framework absorbs as 
much sensor-specific responsibility as possible, including 
management of connection state and threads. The framework has 
two main developer abstractions: 

• the Service Interface and Content Provider form the principal 
unified interface that enables application developers to create 
apps that use the framework. 

• the Driver Interface is implemented by Sensor Drivers that 
process sensor-specific data and is only dealt with by driver 
developers.  

The framework supports building sensing applications that vary 
along three basic dimensions: communication channel, data 
format, and sensor configuration. The communication channel 
used by sensors to communicate with the mobile device may vary 
across sensors and/or applications (e.g., USB, Bluetooth, NFC). 
Additionally, the type of data collected can vary by format, size, 
and frequency of data samples. The third dimension is the 
configuration requirement of the sensor such as sampling rate, 
trigger conditions or alerts, identifiers, and calibration. Our 
framework aims to support any combination of communication, 
data format, and sensor configuration(s). 



     
 

 
Figure 2: Generic architecture of the ODK Sensors 
Framework. Service Interface and Content Provider form the 
principal unified interface used by apps to communicate with 
the framework. Sensor Manager contains references to all 
available Sensors. Channel Managers are specific to 
communication channels and manage connections and data 
transfers with underlying hardware sensors. 

 
The ODK Sensors framework (Figure 2) supports multiple 
underlying communication modalities by providing abstractions 
called Channel Managers that encapsulate channel-specific details 
such as sockets (for Bluetooth) and handshakes (USB AAP). This 
encapsulation allows low-level, medium-specific communication 
protocols to be hidden from both the application and driver 
developers. Channel Managers allow Sensor Drivers to be written 
without knowledge of which communication protocol is being 
used to transmit the sensor-specific commands.  Currently, the 
ODK Sensors framework has channel managers for Bluetooth and 

USB.  The Bluetooth Manager handles low-level communications 
with all Bluetooth-enabled sensors using Android’s built-in 
libraries. The USB Manager handles USB/AAP protocol-specific 
low-level communications for drivers of sensors that are 
accessible over USB.  Moving forward, the framework will also 
handle other communication media such as WiFi and near-field 
communication (NFC). 
Additionally, ODK Sensors supports multiple data types, sample 
sizes, sampling frequency, and a variety of configuration steps by 
utilizing Sensor Driver abstractions that encapsulate sensor-
specific data processing. A Sensor Driver handles the particular 
messaging protocol that configures and/or requests data from an 
external sensor by issuing commands to the appropriate Channel 
Manager. It converts raw data from the sensor and packages it 
into <key,value> pairs that are forwarded to the app. The 
<key,value> format enables app developers to remain agnostic 
of the sensor protocol specifics and focus only on sending 
appropriate commands and handling the collected data. This core 
functionality (e.g., sensor configuration, data processing) is 
specific to the sensor type rather than the app. Modularizing the 
system enables multiple, different apps to interface with the same 
type of sensor by reusing an existing Sensor Driver. In addition to 
allowing for easy reuse, the Sensor Driver design shields the app 
from changes in the communication protocol, configuration, or 
data type since these changes are isolated to code that processes 
sensor-specific data. Shielding apps from these changes leads to 
potentially more robust systems that are easier to maintain.  
Continuing with the Current Monitoring App introduced above as 
an example, assume the analog current sensor requires an ADC 
(analog-to-digital converter) of a microcontroller to read its value. 
In our system, the sensor would be connected to an Arduino USB 
Bridge connected via USB to the Android device. When the 
Current Monitoring App starts up, it simply connects to the ODK 
Sensors framework via the Service Interface, sends the sensor’s 
configuration information (e.g. sampling rate) to the framework, 
which routes it to the appropriate Sensor Driver. The Sensor 
Driver encodes this information into a format that can be decoded 
by the ARD Sensor Driver and sends it down to the Arduino 
interfacing board via the USB Manager. A driver developer would 
need to implement the ARD Sensor Driver (defined in Table 1) 
that executes the command and reads the low-level ADC values. 
These values are forwarded to the USB Manager using the USB 

Component Description Developer Type 
Android  

Application App Top-level user app that contains the Application’s logic Application 
Service Interface Entry point into the framework for Application to interface with sensors Framework 
Content Provider Data store provided by framework for an Application’s convenience  Framework 
Sensor Manager Manager that maintains Sensors state and routes messages to/from Sensor Drivers Framework 
Sensor Driver Module to control a specific sensor and process sensor-specific data Driver 
Channel Manager Abstraction for physical communication channels (e.g. USB, Bluetooth) Framework 
BT Controller Object to handle low-level BT communication with sensor Framework 
AAP Communication Layer Wrapper for AAP to communicate with AAP-compliant devices over USB Framework 

Arduino 
Arduino Controller Arduino’s controller that handles communication over USB and multiplexing sensors  USB Bridge 
ARD Sensor Manager Data structure used for routing messages to/from ARD Sensor Drivers USB Bridge 
ARD Sensor Driver Module to sample a sensor connected to the Arduino’s low-level I/O interface Driver 

 
Table 1: A summary of Android and Arduino components discussed in this section. The Developer Type column lists the 3 
different types of developers responsible for developing components, i.e. Application, Framework or Driver developers. USB 
Bridge refers to the developer of the Arduino USB Bridge (outside the scope of our framework). 



Bridge. The USB Manager routes the data to the appropriate 
Sensor Driver for decoding. The decoded sensor data is made 
available to the Current Monitoring App as generic <key,value> 
pairs via either the Content Provider or the Service Interface.  

2.1 Framework Interface 
The modular structure of the framework allows apps to access an 
assortment of sensors for a variety of use cases via a simple 
interface. The Service Interface is the entry-point for apps to 
interact with the framework and has the methods shown in the 
following interface description:  
 
interface ODKSensorService { 
boolean sensorConnect(in String id,  
  Boolean useContentProvider); 
void configure(in String id, in Bundle config); 
boolean startSensor(in String id); 
boolean stopSensor(in String id); 
List<Bundle> getSensorData(in String id,  
  long maxNumReadings); 

} 
 
To control a specific sensor, an app references it by its unique 
sensor ID. If the app already knows the sensor’s ID it calls 
sensorConnect to connect to the sensor; otherwise it must go 
through a discovery process to find the ID. In case the Sensor 
Manager has already discovered and paired with the sensor, it 
completes the handshake with the device. Otherwise the app 
launches the framework’s built-in, interactive sensor discovery 
system to find the appropriate driver for this sensor. A mapping of 
a new sensor ID to the selected Sensor Driver is added to the 
Sensor Manager after the discovery process completes 
successfully. This mapping is used to later route sensor data and 
app requests to the correct Sensor Driver. Discovering sensors and 
creating sensor ID to Sensor Driver mappings at runtime makes 
the system configurable and simplifies deployments.  
The framework provides apps with two mechanisms for receiving 
sensor data. Apps must specify whether they will use the Content 
Provider, which stores data persistently, to receive data or if they 
will get data directly via the Service Interface, leaving the data 
storage responsibility to the app. A background thread within the 
framework retrieves data, at a rate specified by the app, from all 
Sensor Drivers that are registered with apps requiring the Content 
Provider for data delivery. An app that has chosen to use the 
Content Provider queries it directly whenever it needs to get data 
from a sensor. The data in the Content Provider is owned by the 
app.  

2.2 Sensor Driver Interface 
The ODK Sensors framework is designed to minimize the 
programming required to add a new sensor type by centralizing 
sensor customizations into a single interface that can be utilized 
by the framework. This is achieved by requiring that all Sensor 
Drivers implement the Driver interface shown in the interface 
description: 
public interface Driver { 
byte[] configureCmd(Bundle config); 
byte[] startCmd(); 
byte[] stopCmd(); 
SensorDataParseResponse getSensorData( 
  long maxNumReadings,  
  List<SensorDataPacket> rawSensorData,  
  byte[] remainingData 
); 

} 
 

By forcing all drivers into this abstraction the framework is able 
to transform high-level application interactions into the lower 
level of sending commands, receiving data, and parsing data.  
To implement a sensor driver, developers need to be familiar with 
the specifics of their hardware sensor. First, developers need to 
know what communication interfaces are available for the new 
type of sensor, which currently is limited to Bluetooth and USB. 
If the sensor communicates only over a low-level I/O interface 
(e.g. I2C, SPI, etc.), it will connect to our framework via an AAP-
compatible Arduino board. This will require an additional driver 
on the Arduino to connect to the Android framework over USB. 
Implementing a driver to run within our Arduino USB Bridge is 
just a matter of inheriting from an abstract base class and 
overriding pure virtual methods to implement sensor-specific 
initialization, configuration, and sampling. These drivers are 
currently developed within the USB Bridge codebase, which 
requires a firmware upgrade when creating or modifying a driver. 
In the future, we want drivers to be downloaded to the Arduino 
runtime without requiring a firmware upgrade.   
The next important part is to understand the standard messaging 
protocol of the sensor. The protocol and data format details 
provided in the sensor’s datasheet usually include information 
about configuring and receiving/decoding data from the sensor. 
The framework manages the drivers’ state, which makes Sensor 
Drivers stateless. The configureCmd method of a driver converts 
a Bundle containing configuration parameters, like sampling rate, 
into the sensor-specific configuration command, and returns it as a 
byte array. The framework then sends this array to the hardware 
sensor via the appropriate Channel Manager. Digital sensors 
typically have commands to start or stop data sampling; these 
commands are affected by the startCmd and stopCmd methods 
respectively. The getSensorData method implements parsing of 
low-level, raw sensor data contained in SensorDataPackets and 
returns high-level data contained in SensorDataParseResponse 
that can be easily used by applications. The remainingData 
array passed in to getSensorData contains any driver-specific 
state that is managed by the framework.  

2.3 Implementation details 
Our framework is implemented on the Android platform, which 
was chosen because it is open source and supports background 
processes and rich inter-application communication. The ODK 
Sensors framework runs as an Android Service that starts (if it is 
not already running) when an app binds to the service or when an 
AAP-compliant USB device is plugged into the Android device. 
The framework has been tested on several Android platforms with 
varying amounts of memory and CPU power; examples include 
the HTC Nexus One, Motorola Xoom, Motorola Droid, and 
Huwaei IDEOs (the low-cost Androids available in Kenya). The 
framework is implemented in about 3500 lines of code, excluding 
the sensor-specific drivers. The four Sensor Driver 
implementations are about 100 lines each. To interface with the 
ODK Sensors framework, apps typically need approximately 
another 100 lines of code. 
The Bluetooth Manager handles low-level communications with 
all Bluetooth-enabled sensors using Android’s built-in libraries. It 
handles multiplexing by creating separate BT Controller objects 
with their own thread to preventing blocking when 
communicating with each external sensor. The BT Controller 
objects simply handle the RFCOMM socket I/O and dispatch data 
to the higher-level Sensor Driver as a generic 
SensorDataPacket with a payload for sensor-specific data 



processing. The Bluetooth Manager keeps a one-to-one mapping 
between sensor IDs and BT Controller objects. 
The USB Manager handles USB/AAP protocol-specific low-level 
communications for drivers of sensors that are accessible over 
USB. USB Manager, and a wrapper layer over the AAP, handles 
USB-related events, session management, and messaging. Unlike 
Bluetooth RFCOMM sockets, multiple sensors can communicate 
over the same USB channel. So rather than having a dedicated 
thread per sensor (as provided by BT Controller), the USB 
subsystem has one input and one output thread to handle data 
traffic to multiplex all USB sensors onto one physical channel. 
 

 
Figure 3: Architecture of the Arduino USB Bridge. The 
Arduino Controller facilitates communication between the 
Android framework and the ARD Sensor Manager, which 
talks to each sensor through its ARD Sensor Driver.  
 
Simple sensors (e.g. temperature or current sensors) are typically 
accessible only over low-level I/O interfaces like I2C, SPI etc. 
These sensors are connected to an embedded microcontroller to 
facilitate data collection. We use AAP-compatible Arduino USB-
hosts to connect such sensors to Android devices that implement 
the AAP (i.e. have version 2.3.4 or higher of the Android OS). In 
our case this excludes the Droid and IDEOs that have version 2.2 
of the OS. Our current implementation uses an Arduino 
Mega2560 as the sensor/Android USB Bridge. Since the Arduino 
serves as the USB host, it can communicate with all Android 
devices that have a USB port and run a supported version of the 
Android OS. 
We developed a lightweight framework (depicted in Figure 3) for 
the Arduino board that implements this bridge. An AAP wrapper 
class handles USB communications with the connected Android 
device. Much like the Android framework, the Arduino firmware 
has an ARD Sensor Manager that maintains a mapping of sensor 
IDs and ARD Sensor Drivers that communicate with sensors 
connected to the board over its low-level I/O interfaces. The 
Arduino framework is implemented in C++ in about 1000 lines of 
code. The ARD Sensor Drivers implemented so far are about 50 
lines of code each.  

3. APPLICATIONS 
We have developed several applications to evaluate the ODK 
Sensors framework. These applications were chosen as examples 
to demonstrate reuse, flexibility, and extensibility of the 
framework. Three of the four applications shown in Table 2 and 
discussed below have already been trialed in a developing world 
context. Leveraging our framework to separate out the 

application-specific logic from communication logic has 
simplified the applications significantly from their original form. 
Building the applications has also helped us understand the 
interface between sensor drivers and user applications. Together 
the applications exercise both the wired and wireless subsystems 
of the framework and, as we see it, are exemplary of the four 
commonly used styles of data collection in sensor-based systems 
(Table 2), elaborated in more detail below: 

• Single Reading: The user requests data from the sensor and 
chooses to record data points by taking a single reading from 
a real time stream of data. The medical sensors application 
that connects tools (e.g., blood pressure, pulse oxymetry) to a 
phone is an example of this use case. 

• Real-Time Time-Series: The user has an active session with 
the sensor and observes a stream of samples from the sensor. 
Monitoring the temperature curve of a milk pasteurization 
procedure is an example of this use case.  The user may want 
to save a specific window of data for later review as well, as 
in the case with an electrocardiogram (ECG). 

• Snapshot Time-Series: Sensors are deployed to 
autonomously monitor certain phenomena. They aggregate 
readings over a period of time and report it to a remote 
location periodically. Vaccine refrigeration monitoring is an 
example of this use case. 

• Historical Time-Series: Sensors are deployed to 
autonomously monitor certain phenomena (e.g., movement 
of an object such as a water can). However, unlike the case 
of a Snapshot Time-Series, data retrieval is not autonomous 
and requires human intervention. The WaterTime monitoring 
application exemplifies this approach.  

 
Application Channel Configuration Data Style 

Medical Bluetooth Calibrate Single Reading 

MilkBank USB Sampling Rate Real-Time 
Time-Series 

Vaccine USB Alerts 
Sampling Rate 
Snapshot Size  

Snapshot 
Time-Series 

WaterTime Bluetooth Identifier 
Calibrate  

Historical 
Time-Series 

 
Table 2: Variation in three dimensions (Communication 
Channel, Configuration, and Data Style) that we have 
identified as the main differentiating factors of applications as 
demonstrated by four different sensing applications described 
in Sections 3.1 – 3.4. 
 

3.1 Medical Sensors 
The Medical Sensors application aims to connect a set of tools 
typically found in a doctor’s office with a mobile device making it 
easy to record medical sensor information along with 
observational data. In addition to automating modern medical 
practices, we envision such an application enabling health care 
workers to take patients’ vital readings in ad-hoc locations such as 
homes, ambulances, rural clinics, and emergency relief stations.  
Simplifying the operation of medical devices is vital in enabling 
lightly trained individuals to reliably gather patient data.  This will 
aid in gathering accurate patient records by automating data 
collection. By recording the data directly on the phone, it can be 



used locally as part of a decision support system [13] or sent to a 
specialist elsewhere for remote evaluation/diagnosis [9].  Further, 
the application offers the ability to create a mobile diagnostic 
record of a patient and will eventually be able to interface to 
electronic medical records systems such as OpenMRS [23].  
The ODK Sensors framework allows for any number of sensors to 
be connected and operated via a single user interface. The Medical 
Sensors application is designed to support many usage scenarios 
by providing a framework for interfacing with a common set of 
instruments that are part of typical doctor’s examinations 
including (but not limited to): stethoscope, otoscope, 
thermometer, blood oxymetry, and ECG. To enable lightly trained 
health professionals to become more effective at gathering 
medical information, each sensor can have an accompanying set 
of user interfaces to create an integrated contextual help system 
with educational videos and figures to help ensure proper setup 
and operation. Projects such as a Midwife’s ultrasound 
demonstrate that assistive UIs for sensing devices can scaffold 
complex sensing tasks [4]. Typically, during a medical 
examination there are measurements taken that could be semi-
automated with the built-in sensing capabilities of a mobile 
device. For instance, a mobile phone has a microphone, speaker, a 
high-resolution camera, and ample data storage. These capabilities 
make it easier to capture and save measurements and 
observations. These measurements can be in a variety of formats 
and may need to be saved for future reference and trend analysis. 
 

 
Figure 4: Heart rate application displays the instantaneous 
beats per minute of a user’s heart. This application is an 
example of single-reading, real-time use-case.  
 
As an example we have implemented a heart rate monitoring app 
that leverages the ODK Sensors framework to interact with a 
Bluetooth heart rate sensor.  It simply receives instantaneous heart 
rate (Figure 4) from the sensor and displays it on the UI. This 
sensor comes pre-calibrated but, if needed, the framework could 
also be used to calibrate such sensors. 
3.2 Monitoring Milk Pasteurization 
Breastfeeding is recognized as the best way to get nutrition to a 
newborn.  Breast milk contains the appropriate nutrients to 
nourish proper development and the antibodies to ensure a strong 
immunity system.  Unfortunately, HIV-infected mothers can 
transfer the virus to an infant through their breast milk, which is a 
major cause of child mortality in sub-Saharan Africa [5].  Rather 
than offering children the much-less than ideal alternative of 
neonatal formula, milk from HIV-infected mothers can be 
pasteurized to inactivate the HIV and reduce transmission of the 
virus.  Research shows that HIV can be denatured at a temperature 
that does minimal harm to the milk’s nutrient and antibody 
content [19]. Flash Heat Pasteurization (FHP) is a low-cost 

method to accomplish this. However, the process must be 
carefully monitored.  
FHP can be accomplished by heating the expressed breast milk in 
a jar immersed in a hot water bath. A sensor (stainless steel 
covered) can be placed in the milk to monitor the temperature 
curve. FHP heats the milk quickly to 70°C. The person 
performing the procedure needs feedback that the milk is getting 
heated at required rate. The milk is then cooled, often frozen, for 
later use when it is the baby’s feeding time.  Supervisors want to 
be able to record the temperature curve to determine that the 
procedure is being done correctly and to provide additional 
training. 
 

 
Figure 5: Flash heat pasteurization setup in the lab. 
 
Chaudhri et al. developed a device for this purpose using 
FoneAstra [7]. Briefly, a temperature probe connected to 
FoneAstra is used to monitor the temperature of milk as it is 
heated during the process (Figure 5). Audiovisual feedback from 
the device through a two-line LCD screen and a beeper guides 
users during the process and sends the recorded temperature-time 
curve to a server at the end of the procedure. Feedback from user 
trials indicated need of a more flexible system that, we 
hypothesize, would be more practical to implement on a 
smartphone.  
 

 
Figure 6: MilkBank application shows the temperature curve 
during the flash heat pasteurization process. This application 
is an example of real-time, time series use-case. 



Hence we have re-implemented this application to run on Android 
devices. The top-level MilkBank application (Figure 6) leverages 
the ODK Sensors framework to communicate with the same 
temperature probe (used in [7]) connected to Android via an AAP-
compatible Arduino board. A 1-Wire temperature sensor driver 
plugs into the ARD SensorManager on the Arduino and is 
responsible for communicating with the temperature probe. A 
sensor driver running in the ODK Sensors framework controls the 
driver on the Arduino. The sensor driver implements the Driver 
interface (described in Section 2) and communicates with the 
Arduino via the USB Manager. 
The MilkBank application invokes the framework’s 
sensorConnect method to instruct the framework to establish a 
session with the Arduino driver. Since this is a Real-Time Time-
Series application, parsed sensor data is not retrieved via the 
framework’s Content Provider (getSensorData is used instead) 
and the useContentProvider flag is set to false. The 
framework’s configure method is invoked to instruct the 
framework’s sensor driver to configure the sensor, which in turn 
constructs and returns the appropriate configuration command that 
is sent to the Arduino driver. The configuration information 
includes the sampling interval and the number of samples to 
accumulate in each data-series that is sent back to the Android. 
For this application the sampling interval is typically set to 1-2 
seconds and the data-series length is set to 1. The application 
invokes the framework’s startSensor and stopSensor 
methods to instruct the driver to start or stop sampling the 
temperature probe respectively, which in turn returns the 
appropriate commands that are sent to the Arduino driver to start 
or stop sampling. In addition to these simple invocations that set 
up the driver and sensor appropriately, the application implements 
its specific logic, which includes periodically invoking the 
framework’s getSensorData method to get temperature data 
from the sensor, providing appropriate feedback to the user based 
on the current temperature and sending the aggregated 
temperature data to a server at the end of the procedure.  
Separating the application logic from lower-level communications 
and sensor-specific data processing will make it transparent to 
support a Bluetooth-enabled temperature probe, if needed at some 
facilities. Additionally, the rich Android user interface will 
minimize user-training time.  

3.3 Vaccine Refrigerator Monitoring 
Vaccine refrigerators throughout the vaccine cold chain must 
ensure that vaccine doses are kept within strict temperature limits 
to ensure no loss in potency and effectiveness.  Although central 
repositories might be well staffed and monitored, many district-
level and local dispensaries do not have extensive support.  
Chaudhri et al. have used FoneAstra [6] equipped with 
temperature probes to monitor equipment used to store and 
transport vaccines. In this application aggregated temperature 
readings are periodically uploaded to a server via SMS. 
Additionally, as soon as temperatures deviate from the required 
range, an SMS message alerts the server, which further pushes out 
notifications to the appropriate staff for that facility.  In this way, 
a local dispensary manager can be easily notified even during off 
hours while there is still time to save the vaccine samples.  
Field deployments indicated the need of enhanced visual feedback 
at facilities that store high volumes of vaccines and configurable 
options for communication (e.g. 3G, SMS, Bluetooth). As with 
the milk pasteurization application (Section 3.2), it is favorable to 
use a smartphone-based sensing platform that can provide the 

local user interface for the supervisor, in addition to having a 
simpler, lower-cost sensing solution like FoneAstra.  
The ODK Sensors framework provides a straightforward way to 
address the new requirements.  A basic monitoring device (Figure 
7, top & below-left) can be left at the refrigerator to do alarms and 
remote reporting, while a supervisor with a smartphone can visit 
the refrigerator, connect to the device, and observe the local 
temperature data without accessing the server.  The detailed 
information available at this level (Figure 7, below-right) may be 
much richer than that reported back to the server and provide 
details such as every time the refrigerator’s door is opened. 
Configurable communication options will help organizations 
customize deployments according to their needs and budget 
constraints. For instance, if it’s important to avoid the recurring 
cellular cost, the device can be configured to relay data only over 
Bluetooth, although this will of course limit the effectiveness of 
real-time alerts. 
 

 

 
Figure 7: (top) Hardware setup on Arduino board showing 
temperature sensor (A), current sensor (B), and USB 
connection to smartphone (C). (Below-left) Vaccine 
refrigerator monitoring setup showing packaged Arduino box 
(A), smartphone (B), temperature sensor probe (C), and 
current sensor (D). (Below-right) VaccineMonitoring is a 
snapshot time-series use-case.  
 
Since the temperature probe used in the Vaccine Refrigerator 
Monitoring application is also based on 1-Wire (as in the 
MilkBank application of Section 3.2), the hardware setup and 
sensor drivers used on the Android and Arduino are exactly the 
same as in the previous section. However, driver configuration is 
slightly different as this is a Snapshot Time-Series application. 



The top-level application invokes sensorConnect with the 
useContentProvider flag set to true as this application 
retrieves sensor data from the framework’s Content Provider. The 
sampling interval typically used is in the order of minutes and 
each temperature data-series typically has 15-30 samples.  The 
application-specific logic is obviously different, which includes 
configuring the frequency of reporting to the server, the 
communication medium used to communicate with the server 
(3G, SMS, Wi-Fi etc.) and temperature thresholds for alarms. 
The MilkBank and VaccineMonitoring applications demonstrate 
the configurability and flexibility enabled by the ODK Sensors 
framework to easily support different models of sensing 
applications, while reusing the same system components. 

3.4 Time Studies of Water Gathering 
Rural areas in of many parts of the world do not have safe, 
conveniently located sources of water, so residents spend several 
hours every day to collect water for household use. Policy makers 
need to study the amount of time spent by households to collect 
water (referred to as “time-use”) in order to provide convenient 
water sources (e.g. communal water taps). In a joint-project with 
public policy researchers at the University of Washington’s 
School of Public Affairs, we developed an application called 
WuhaGize (“WaterTime”) that collects time-use data [8]. 
WuhaGize was trialed at households in three villages of Ethiopia 
during the summer of 2011. For this application we developed a 
Bluetooth-enabled, battery-powered motion sensor (Figure 8) that 
is attached to jerry cans used for collecting water. Data recorded 
by the sensors during time-use studies is retrieved by an Android 
phone over Bluetooth.  
The WuhaGize application was developed as a monolithic app 
that implemented the application-logic and all the low-level 
interactions between the phone and sensor. To evaluate how well 
the ODK Sensors framework could handle an existing application, 
we refactored the original WuhaGize app to create a new app that 
leveraged our framework. This allowed us to compare a 
monolithic sensing app with its analogous, decomposed version, 
built on top of our framework. Additionally, WuhaGize acted as 
an example of a Historical Time-Series, an additional data 
collection style that our framework was able to support.  
 

 
Figure 8: Researcher attaching the WuhaGize sensor, encased 
in a black box, to a water container. The inset shows the 
sensor attached to the water container.  

Refactoring WuhaGize distributed its functionality into three 
components that take advantage of the framework’s abstractions. 
The top-level user-app is responsible only for the user interactions 
and application-specific logic. Sensor-specific logic is 
implemented in a Sensor Driver that lives within the framework. 
Communications with the sensor hardware are handled 
transparently via the framework’s built-in Bluetooth Manager. 
The user-app communicates with the framework over the unified 
interface to configure sensors, start data collection, and process 
the data it receives from the framework, while the framework 
handles everything else behind the scenes. 
4. RELATED WORK 
The variety and number of mobile applications has increased in 
recent years due to the popularity of smartphones and app-stores. 
However, the number of applications that leverage external 
sensing devices is limited, in part due to the programming 
challenges of implementing communication between smartphones 
and external sensors, and in part due to energy constraints and 
deployment complexities, which prevent adoption of these 
applications in resource constrained environments. This leads to 
two main areas of research: 1) reducing programming barriers [10, 
22] and 2) making mobile sensing applications more efficient and 
simpler to deploy [21 26, 27, 29]. Within these two areas some 
work focuses primarily on on-device sensors, while others seek to 
expand communication to sensors not built into the phone. Our 
work is an effort to not only lower barriers of application creation, 
but also to provide for a high level of customization and flexibility 
that increases the variety of external sensors that applications can 
use. 
The Reflex [22] project seeks to bridge the programming gap 
between simple phone applications and those that interface with 
external sensors by presenting a framework for transparent 
programming of heterogeneous smartphones for sensing. They 
present a suite of runtime and compilation techniques that conceal 
the heterogeneous distributed nature of the system that results 
from the realization of methods proposed in Dandelion [21] to 
reduce power consumption by offloading data processing to low-
power co-processors. While Reflex focuses on energy efficiency 
and performance in mobile-sensing applications, ODK Sensors 
focuses on lowering programming barriers for application 
developers and supporting different data and application types. 
Reflex’s concept of a module for in-sensor data processing is 
equivalent to ODK Sensor’s concept of a Sensor Driver. 
However, the sensor driver executes within the framework rather 
than on a separate co-processor. LittleRock [26] and Turducken 
[27] present architectures that offload continuous sensor data 
processing to a dedicated low power processor.  
Other frameworks have been proposed that are similar to ODK 
Sensors, but seek to interface primarily with built-in sensors.  
Zhuang et al. [29] introduced an adaptive location-sensing 
framework that improves energy efficiency of location-based 
applications through suppression or substitution of location 
requests from built-in GPS sensors, which represent a significant 
power drain. This framework is a layer between the application 
and sensor but instead of lowering programming barriers, it seeks 
to reduce energy costs. One of the applications that share our 
framework’s goal of lowering barriers for sensing applications is 
AndWellness [16], which lets researchers customize surveys to 
collect data from sensors on phones held by participants in their 
studies. However, unlike ODK Sensors, this application focuses 
primarily on making life easier for the researcher with 
customizable surveys and front-end visualization of incoming data 



in real-time, rather than on simplifying the programming task for 
the developer. Our work aims to lower barriers for the application 
and sensor driver developer and in the future interface with 
applications such as ODK Collect [15] or ODK Tables [17], 
which will help make an easy to use program for the end-user. 
PRISM [10], like ODK Sensors, is a sensing middleware whose 
aim is to help developers deploy sensor applications without 
reinventing the wheel each time or needing to be worried with 
distributed operation, security, and privacy of those applications. 
PRISM is evaluated on a variety of applications, but these 
applications only interface with sensors built into the phone with 
the focus on deploying them at scale. In contrast, our framework 
focuses on interaction with external sensors by abstracting away 
the communication layer to retain programming ease. 
IOIO [18] and Phidgets [25] are development boards designed to 
work with Android phones over USB. They abstract the 
communication between external sensors and software running on 
the smartphone, enabling Android applications to directly control 
hardware attached to them. They are both similar to the Arduino 
USB Bridge in our system. Amarino [20] is another toolkit that 
connects Android phones with Arduino microcontrollers via 
Bluetooth. While the goals of Amarino are similar to our Arduino 
USB Bridge (but over Bluetooth), the overall ODK Sensors 
framework is focused on turning an Android device into a 
platform that can connect to a wide variety of sensors over 
multiple communication channels. 

5. DISCUSSION AND FUTURE WORK 
The ODK Sensors framework is part of the larger Open Data Kit 
[15] project to develop a modular set of tools to facilitate 
development of new information services in under-resourced 
contexts that lack sufficient technological infrastructure and 
expertise. This project aims to expand ODK by providing a tool to 
build information services with externally sensed data, thereby 
removing the need for error-prone manual entry of sensor 
readings. For the ODK Sensors framework to be utilized in 
resource constrained environments it will need to connect to an 
assortment of low cost, off-the-shelf sensors. We plan to expand 
the types of sensors that can be connected through the ODK 
Sensors framework by supporting a wider range of USB Bridge 
interfacing boards (e.g. IOIO, Phidgets). Also, as additional 
Android devices ship with USB-master or USB On-The-Go, we 
will enhance the USB Manager to act both as a USB-slave and 
USB-master. We also plan to enable access to the new class of 
NFC-enabled low-power sensors that will be coming to market 
soon. Finally, we plan to integrate built-in Android sensors into 
the framework, creating a single interface for all sensing 
applications. Integrating all the built-in sensors will further verify 
that the framework interface is sufficiently generic to support a 
variety of sensor types. 
Multiple applications leveraging multiple sensors simultaneously 
leads to a possible contention for sensor control. This raises the 
requirement for conflict resolution techniques like leader-selection 
to resolve configuration differences (e.g., sampling rate). We also 
plan to explore models of shared ownership of sensor-data, for 
example determining when is it safe to remove data from the 
shared Content Provider.  
The long-term goal of the framework is to enable a market of 
reusable application components and drivers that can be easily 
integrated by non-technical users to create sensor-based 
applications. However, as currently implemented, the framework 
and Sensor Drivers are tightly coupled because Sensor Drivers 

execute within the framework app.  Currently, adding a new 
Sensor Driver requires the app to be recompiled, which makes 
extensibility more difficult than it should be. Our next step is to 
separate the Sensor Drivers from the framework into separate 
Android apps. We hope this will lead to an ecosystem of driver 
implementations that can be easily combined under the framework 
and downloaded from the Android Market just as other apps 
today. 

6. CONCLUSION 
In regions where smartphones constitute a significant portion of 
the computing infrastructure, there is an impetus to adapt mobile 
devices to leverage sensors traditionally designed for standard 
PCs or custom hardware. In this paper we presented ODK 
Sensors, a framework aimed at lowering development barriers for 
sensor-based mobile applications. This is particularly helpful in 
promoting ICTD efforts, as highly technical resources are 
relatively scarce in many parts of the developing world. We 
identified three dimensions of variability in typical sensing 
applications, namely: communication channel, data collection 
style, and sensor configuration.  
The ODK Sensors framework creates a clear delineation of 
developer roles by decomposing a typical mobile sensing 
application into reusable abstractions and modules. This enables 
application developers to focus only on the high-level application 
logic, while driver developers focus on creating reusable modules 
that handle sensor-specific data processing and control. The 
framework handles most of the complexities that are common 
across sensing applications including: communication channel 
specifics, connection state management, threading, data buffering, 
etc. The Framework’s abstractions isolate changes behind the 
service interface, shielding top-level apps from such changes. We 
validated our system decomposition boundaries by building four 
representative applications that varied along the three dimensions. 
Decomposing the system into simpler modules also improves the 
overall robustness of the system because this enables more 
effective testing and debugging of individual 
modules. Additionally, as the adoption of reusable modules 
increases, it also helps build confidence in developer and user 
communities. 

7.  ACKNOWLEDGEMENTS 
This material is based upon work supported by NSF Research 
Grant No. IIS-1111433 and a NSF Graduate Research Fellowship 
under Grant No. DGE-0718124.  

8. REFERENCES  
[1] Android Open Accessory Development Kit: 

http://developer.android.com/guide/topics/usb/adk.html  
[2] Basha, E., et al. “Model-based Monitoring for Early Warning 

Flood Detection”. In Proc. of the 6th ACM Conference on 
Embedded Network Sensor Systems (SenSys '08), 295-308.  

[3] Bhardwaj, A., et al. “MELOS: A Low-cost and Low-energy 
Generic Sensing Attachment for Mobile Phones”. In Proc. of 
the 5th ACM Workshop on Networked Systems for 
Developing Regions (NSDR '11), 27-32. 

[4] Brunette, W., et al. “Portable Antenatal Ultrasound Platform 
for Village Midwives”. In Proc. of the First ACM 
Symposium on Computing for Development (ACM DEV 
'10), Article 23, 10 pages.  

[5] Bryce, J., et al.  “WHO Estimates of the Causes of Death in 
Children”. Lancet 365. (2005), 1147–1152. 

http://developer.android.com/guide/topics/usb/adk.html


[6] Chaudhri, R., et al. “Pervasive Computing Technologies to 
Monitor Vaccine Cold Chains in Developing Countries”. 
IEEE Pervasive Computing. Special issue on Information 
and Communication Technologies for Development. 2012 
(To appear).  

[7] Chaudhri, R., et al. “A System for Safe Flash-heat 
Pasteurization of Human Breast Milk”. In Proc. of the 5th 
ACM Workshop on Networked Systems for Developing 
Regions (NSDR '11), 9-14.  

[8] Chaudhri, R., et al. “Low-power Sensors and Smartphones 
for Tracking Water Collection in Rural Ethiopia”. IEEE 
Pervasive Computing. Special issue on Information and 
Communication Technologies for Development, 2012 (To 
appear). 

[9] Click Diagnostics: http://www.clickdiagnostics.com/ 
[10] Das, T., et al. “PRISM: Platform for Remote Sensing Using 

Smartphones”. In proc. of the 8th Intl. Conference on Mobile 
Systems, Applications, and Services (MobiSys '10), 63-76.  

[11] Datadyne: http://www.datadyne.org/   
[12] Dell, N., et al. “Towards a Point-of-care Diagnostic System: 

Automated Analysis of Immunoassay Test Data on a Cell 
Phone”. In Proc. of the 5th ACM Workshop on Networked 
Systems for Developing Regions (NSDR '11), 3-8.  

[13] DeRenzi, B., et al. “E-IMCI: Improving Pediatric Health 
Care in Low-income Countries”. In Proc. of the 26th Annual 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI '08), 753-762. 

[14] Frontline SMS: http://www.frontlinesms.com/ 
[15] Hartung, C., et al. “Open Data Kit: Building Information 

Services for Developing Regions”. In 4th Intl. Conference on 
Information and Communication Technologies and 
Development (ICTD 2010). 

[16] Hicks, J., et al. “AndWellness: An Open Mobile System for 
Activity and Experience Sampling”. In Wireless Health 2010 
(WH '10), 34-43.  

[17] Hong, Y., et al. “ODK Tables Data Organization and 
Information Services on a Smartphone”. In Proc. of the 5th 
ACM Workshop on Networked Systems for Developing 
Regions (NSDR '11), 33.  

[18] IOIO for Android: http://www.sparkfun.com/products/10748 

[19] Israel-Ballard, K., et al. “Flash-heat Inactivation of HIV-1 in 
Human Milk: A Potential Method to Reduce Postnatal 
Transmission in Developing Countries”. JAIDS: Journal of 
Acquired Immune Deficiency Syndromes, 2007, 318–323. 

[20] Kaufmann, B., et al. “Amarino: A Toolkit for the Rapid 
Prototyping of Mobile Ubiquitous Computing”. In Proc. of 
the 12th Intl. Conference on Human Computer Interaction 
with Mobile Devices and Services (MobileHCI  '10), 291-
298. 

[21] Lin, F., et al. “Dandelion: A Framework for Transparently 
Programming Phone-centered Wireless Body Sensor 
Applications for Health”. In Wireless Health 2010 (WH '10), 
74-83.  

[22] Lin, F., et al. “Transparent Programming of Heterogeneous 
Smartphones for Sensing”. Rice Technical Report 0310-
2011. (2011). 

[23] Mamlin, B., et al. “Cooking up an Open Source EMR for 
Developing Countries: OpenMRS—A Recipe for Successful 
Collaboration”. In Proc. of AMIA Symposium. (2006) 529–
533. 

[24] Parikh, T., et al. “Designing an Architecture for Delivering 
Mobile Information Services to the Rural Developing 
World”. In Proc. of the 15th Intl. Conference on World Wide 
Web (WWW '06), 791-800.  

[25] Phidgets: http://www.phidgets.com/  
[26] Priyantha, B., et al. “Enabling Energy Efficient Continuous 

Sensing on Mobile Phones with LittleRock”. In Proc. of the 
9th ACM/IEEE Intl. Conference on Information Processing in 
Sensor Networks (IPSN '10), 420-421. 

[27] Sorber, J., et al. “Turducken: Hierarchical Power 
Management for Mobile Devices”. In Proc. of the 8th Intl. 
Conference on Mobile Systems, Applications, and Services 
(MobiSys '05), 261-274. 

[28] Talbot, D., “Android Marches on East Africa”. Technology 
Review. MIT. (June 23, 2011). 
http://www.technologyreview.com/communications/37877/?
nlid=4634&a=f 

[29] Zhuang, Z., et al. “Improving Energy Efficiency of Location 
Sensing on Smartphones”. In Proc. of the 8th Intl. Conference 
on Mobile Systems, Applications, and Services (MobiSys 
'10), 315-330.

 

http://www.clickdiagnostics.com/
http://www.datadyne.org/
http://www.frontlinesms.com/
http://www.sparkfun.com/products/10748
http://www.phidgets.com/
http://www.technologyreview.com/communications/37877/?nlid=4634&a=f
http://www.technologyreview.com/communications/37877/?nlid=4634&a=f

	1. INTRODUCTION
	2. FRAMEWORK
	2.1 Framework Interface
	2.2 Sensor Driver Interface
	2.3 Implementation details

	3. APPLICATIONS
	3.1 Medical Sensors
	3.2 Monitoring Milk Pasteurization
	3.3 Vaccine Refrigerator Monitoring
	3.4 Time Studies of Water Gathering

	4. RELATED WORK
	5. DISCUSSION AND FUTURE WORK
	6. CONCLUSION
	7.  ACKNOWLEDGEMENTS
	8. REFERENCES 

