
ODK Tables: Data Organization and Information Services
on a Smartphone

YoonSung Hong, Hilary K. Worden, Gaetano Borriello
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350 [USA]

{hys235, hkworden, gaetano}@cs.washington.edu

ABSTRACT
Many information services require the transfer of only small
amounts of information between a client and server. Furthermore,
their deployment often requires an ecosystem of cloud services
rarely present in developing world contexts. ODK Tables (a
component of the Open Data Kit) provides a way of organizing
data into database tables hosted directly by a smartphone. Clients
can make new entries into the tables (under an extensible access
control model) and make queries of existing information. ODK
Tables supports SMS-based interactions and allows import/export
of tables to other storage whether in the cloud or on another local
computing device. The objective of ODK Tables is to lower
barriers experienced by entrepreneurs or other information
providers in the developing world to field their own information
services. This paper describes ODK Tables’ capabilities, user
interface, performance characteristics, and some example use
cases.

Categories and Subject Descriptors
H.4 [Information Systems]: Information Systems Applications –
groupware, spreadsheets.

General Terms
Management, Design, Human Factors.

Keywords
Mobile databases, mobile phones, SMS, spreadsheets, data tables.

1. INTRODUCTION
Database tables and spreadsheets are a useful way of organizing
information. These models have been very popular on personal
computing platforms and been adapted to a wide range of
applications through general-purpose tools such as Excel and
Access. In the developing world, the desktop personal computer
has not become the dominant platform; instead, the most
commonly available computing platform is the mobile phone.
Unfortunately, tools for organizing data are not as mature on
phone platforms as on PCs. Furthermore, while data to and from
PCs is transmitted over the Internet. In the developing world, the
great majority of users use SMS for basic data communication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
NSDR’11, June 28, 2011, Bethesda, Maryland, USA.
Copyright 2011 ACM 978-1-4503-0739-0/11/06...$10.00.

ODK Tables seeks to bridge this difference by providing a way to
store data into tables directly on a smartphone and provide a user
interface to those tables that displays them efficiently on the
phone’s smaller screen while allowing the user to easily search
and modify data. In addition, ODK Tables uses SMS among the
ways to enter data and make queries of what is already in the
tables. In this way, users of basic phones can still interact with
services that are actually hosted on smartphones.

ODK Tables has been implemented on Android smartphones and
is linked to the mobile data collection tools of Open Data Kit
(ODK) [1]. ODK Tables has two principal facets. The first is its
user interface for SQLite databases. Users can import large
amounts of data to build a new table from a standard spreadsheet
file (.csv or .xls) and can also export data to these same file
formats. The ODK Tables’ user interface allows users to fix
columns on the screen while scrolling others (so as to easily line
up different data columns) and allows for compression of related
data into “collections” (explained further below). We believe that
these are two features novel to ODK Tables and that we have not
seen in the other phone-based spreadsheet applications we
surveyed. The other facet of ODK Tables is the use of SMS
messages to query the tables as well as inserting new rows into the
tables. In addition, ODK Tables facilitates the composition of
SMS messages from the server (smartphone) to clients (using
basic phones).

All the usage models of ODK Tables we investigated share the
need to organize data into a database schema (or table) and then
provide access to that data to a large number of users possibly
using basic SMS phones. This is a common paradigm for many
information services we have seen deployed in developing world
contexts. In other words, making it possible for the services to be
accessed from the cheapest and most common phones with the
server running on a specialized device, in this case, a smartphone
rather than a web server. In addition, we connect ODK Tables to
ODK Collect (the XForm-based data collection tool of the Open
Data Kit) so that new data can be entered in a structured form-
based interaction and we connect ODK Tables to ODK Aggregate
(the database storage component of the Open Data Kit) so that
data can be submitted to cloud servers for backup and/or
forwarding to other services including synchronization with other
phones. We are refining these interoperability interfaces so that
other specialized phone apps can be easily developed to modify
the contents of the SQLite tables and be managed through ODK
Tables.

2. ODK TABLES
Database tables are the underlying abstraction for ODK Tables.
There is a user interface for browsing and manipulating the tables
that is optimized for the small screens of mobile phones.

Properties of the tables and table columns provide aggregate
functions. Finally, communications to the phone can cause new
data to be inserted into the tables and/or can search the tables.
The user interface provides a way for the smartphone user to
answer an incoming message and/or generate a new one.

2.1 Table Presentation and Interface
ODK Tables render data stored in SQLite databases on the
Android phone. A new table can be created from scratch by
adding rows and columns manually. However, it is often easier to
create a spreadsheet on a desktop computer to initially populate a
database. ODK Tables has the ability to read .csv and .xls files
and populate a table automatically. In addition, it can export
existing tables into the same formats for transfer back to a PC.
We are also developing direct import/export from cloud servers
that will be used to backup data and synchronize tables across
multiple phones.

A typical rendering of an ODK Table is shown in Figure 1. Given
the relatively small phone screens, we focused on exploiting
Android’s interface design standards such as long-presses to
deliver specialized functions for on-screen elements and
contextual menus to provide access to general functions.

A table is displayed with a top bar for basic functions and two
fixed rows across the top and bottom of the table. The top bar
provides basic browser-like functions: a home button to return the
UI to the master view of the table (more on other views below); a
refresh button to re-render the table, if necessary; an edit box in
which to enter new cell contents or search term; an enter button to
cause action on the item in the edit box; and an add new row
button that brings up a dialog that asks for a value for each
column on a new row. The header and footer rows of the table
(shown in blue and gray, respectively) only scroll horizontally and
are, by default, always present on the screen (although the user
can choose to hide the footer row) while the table contents, the
rows between the header and footer, can be scrolled (by swiping)
both vertically and horizontally. Obviously, a table can contain
many more rows than can be viewed at one time.

Figure 1. A typical ODK Table showing 4 rows between
header and footer rows. The bar across the top includes

global table controls such as “home” and “add row”.

The top row of the table is used to represent column names. The
bottom row provides summary information for all the other rows.
This footer’s cells can be independently set to summarize
statistical information such as average, count, max, min and mode

of each column. Properties for each cell in this row can be set
through a menu obtained from a long-press.

To make good use of limited screen area, any column can be fixed
to the left edge of the screen so that horizontal scrolling does not
affect its position. This allows the user to compare values in any
two columns easily.

Because ODK Tables is built on top of an SQLite database,
internally generated SQL SELECT statements are used to
populate the table. Users can arrange the order of columns, as
well as set indexing and order-by columns. Indexing is equivalent
to GROUP BY statements in SQL and multiple columns can be
set to be index columns. Indexing forces tables to display only
distinct entries within the indexed columns. Multiple rows with
identical values in those columns are represented by just one row.
For instance, if the “product” column is set to be an index column
in the table in Figure 1, the table will display only one entry for
each of the distinct products. The hidden rows can be viewed by
selecting the row with the “product” value of interest and pivoting
the table on that row, thereby changing the display to only show
that collection of rows, namely, those rows with the same value in
that column. The home button is used to return to the main view
of the table. Users can also order the table contents with respect
to a specific column. For instance, if the “unit” column is set to be
an order-by column, the table will order entries from highest to
lowest unit quantity.

Users can apply both indexing and order-by simultaneously to
columns to generate tables for various purposes. In addition,
multiple columns can be selected as index or order-by columns.
For example, by selecting both “product” and “market” as index
columns; the table shows only distinct rows for every distinct
combination of those two column values. However, a single
column cannot be set to be both an index and order-by column
due to SQLite restrictions. Figure 1 shows an example of indexing
and order-by used together. The table is indexed by the “product”
and “market” columns (marked by “*”) and ordered by the “qty”
column. It follows that Li and Chang are sellers of corn at two
different markets (Foshan and Yichang), and Chang sells the
largest quantity unit of corn at 0.25 units per kilogram in the
Yichang city market. The footer mode is set to min and max for
the price and quantity columns, respectively.

ODK Tables offers an easy way to search over the database and
generates dynamic table results. For instance, indexing the
“product” column in the prices table example generates a table
with only one row for corn. Users can search all corn sales by
long-click on the cell where product equals to corn then select
“View All Like This” in the option menu. Similarly, users can
search for products in a specific market. Currently, the search
does not support inequality conditions such as price >= 0.28/kg
and general term search over all columns. The search must be
column-specific and equality-based. We are investigating how to
extend the current search interface without sacrificing simplicity
and the ability to quickly pivot the table and scroll it to the row(s)
of interest.

Menu options differ in the header and footer rows from those in
the main content rows of the table. A long-press on a header cell
brings up options to “Select This Column”, “Make Index
Column”, “Make Order-By Column”, “Column Properties”, and
“Set Column Width”. A long-press on a footer cell lets users
choose one of the statistical functions to apply to the column such
as average, count (of non-blank entries), min, max and mode.
Options for content row cells include “View All Like This” (used

in concert with index column specifications) and “Delete This
Row”.

ODK Tables contextual menus (available through the menu button
on the phone) allows user to select table-scale functions such as:
table manager (a list-based interface where entire tables can be
added, edited, or removed and their global paremeters such as
fonts and access controls can be set and/or adjusted), column
manager (allowing for the re-arrangement of columns along with
insertion, deletion, and renaming), graphing functions (for
mapping table data onto various types of graphs and explained in
more detail below), and import/export to .csv and .xls files.

We conducted a basic usability study to test the ODK Tables user
interface. We presented users with a scenario and a step-by-step
tutorial to give users approximate instructions for how to set up a
table for that specific scenario. After users completed the tutorial,
they were given a set of new scenarios to test if users could
generalize the knowledge they had gained from the tutorial to
solve new problems. Of the seven participants, not one missed
any problem in the new problem set. We observed that users could
organize tables with indexing and searching without difficulty. In
the survey, users gave an average rating of 4.14 out of 5 for
overall application usability. It should be noted that our test
subjects were all undergraduate students at UW with some
computing background but with many not having experience with
smartphones. However, we feel that a basic level of computing
literacy is likely to be common in the younger generation even in
developing countries.

2.2 Properties and Communication
ODK Tables is more closely tied to databases than spreadsheets.
Properties are a fundamental property of columns rather than
cells. All cells in a column are treated the same way and
mathematical/statistical formulas can only be applied to entire
columns, not individual cells as in a spreadsheet. In addition,
ODK Tables extends the traditional column properties of
databases with extensions to support communication.

Currently, ODK Tables supports the ability of incoming SMS
messages to add new rows to a table or make queries of table
entries. Column properties that deal with SMS communication
include: abbreviation (a short string to be used in referring to a
column); SMS-IN (a check box indicating this is a column that
can be filled by the data from an incoming SMS); and, SMS-OUT
(a check box indicating this is a column whose data is to be
inserted into an outgoing SMS). Although, we are currently
limited to SMS, it is easy to imagine extending the approach to
incoming/outgoing e-mail messages as well.

Figure 2. Column ordering and property screens.

Users can manage columns and their properties through the
column manager. When a user clicks on a specific column on the
list in the column manager, it brings up the column property
interface for that column. Currently, there are five fields including
abbreviation, type, SMS-IN, SMS-OUT, and footer mode.

Abbreviations for column names are used to make better use of
the 160-character limit for SMS messages. Currently, the
following syntax is used to add a new row via an incoming SMS
message (sent by a remote phone to the phone running ODK
Tables):

@Table_Name {+Column_Name Value}*

A typical insertion message is:

@Prices +pro corn +m Foshan +s Li
 +b Wu +pri .28/kg +u 205kg

A typical query message is:

@Prices ?s =pro corn =m Foshan

which will return the names of all corn sellers in Foshan market to
the querying phone. Without the “?” operator, it will return all
columns with SMS-OUT property checked. A response to such a
query, sent from ODK Tables to the remote phone, takes the form:

pro=corn s=Li pri=.28/kg u=205kg

If there is more than one entry to be returned, each entry is
separated by a semicolon. ODK Tables tries to fit the entire
response into a single message, but will extend the reply to
multiple messages, if needed. Supported types are text, numeric
values, date, phone number, and date/time range. In the future, we
will add image, voice, and more as we use communication
methods that can include these data types such as e-mail and
MMS. In addition, we want to allow for more flexible syntax that
is closer to how users compose unstructured SMS messages.
However, we leave this for future work.

Users of ODK Tables can also send row data in useful ways. For
each table, an outgoing message format can be defined. The
formatted messages work much like “printf” in C; column names
are placeholders in the message templates. When the user selects a
row and a format, the template is filled in with data from that row

and sent to the specified phone number. A typical message
template could be:

Buy %pro% from %s% at %pri% for %u%

which generates the SMS message “Buy corn from Li at .28/kg
for 205kg” to a remote phone. It might be used to inform an agent
in the market to take the specified action.

2.3 Access Control
Any information service application requires a way to limit access
appropriately. ODK Tables makes use of its own tables to set up
lists for read/write access. Tables can reference other tables that
serve as access groups for write access (the ability to add new
rows) and/or read access (to make queries) permissions. Tables
without a reference to an access group table can only be accessed
locally on the phone and are thus considered potential access
group tables themselves.

Users can create as many access group tables as they need.
Generating an access group follows the same steps as creating a
regular table with the most likely scenario being an import from a
previously prepared spreadsheet. However, to be established as an
access group table, the table must have two required columns:
name and phone number. Phone numbers from SMS headers are
uniquely identified and indicate the phone number from which the
SMS originated (as guaranteed by the cell service provider), thus
phone numbers qualify as reliable unique identifiers for the access
group. Name is a human readable identifier for the corresponding
phone number. Additionally, users can include a password column
to enhance security, for example, to provide a basic level of
protection against a borrowed or stolen phone being used to insert
bad data into a table. Each user in the access group can be
assigned their own password or a single group password can be
copied into every row. Access group tables can be applied as
either read or write access control lists for regular tables but they
themselves are not accessible via SMS or other remote messaging.

When query or insertion messages are received, ODK Tables first
checks if the phone number is within the corresponding access
group. And, if a password column exists in the access group table,
that it matches with the password included in the message. Only if
the above conditions are met, is querying or insertion permitted.
Using the above access group approach, ODK Tables can limit
who can access which tables with permissions on a phone number
or password basis. For e-mail, this process may be enriched with
the possibility of including signed certificates in the message.

2.4 Graphing
ODK Tables includes a number of graphical display options. For
both the main table and collection tables (recall that collections
are sub-tables that include only rows with the same value for the
index columns), users can set a default graph type and columns to
be used when “Graph” is selected from the contextual menu. For
example, a user might set the main graph to be a pie chart broken
into sections for each value in Column A, while the graph for the
collection tables are line graphs with Column B used for the x-
axis and Column C for the y-axis. The main graph will use all of
the data in the table, but collection graphs will only use the data
from the collection being viewed.

Figure 3. A whisker plot of temperature data showing
min/max and 25th and 75th percentiles for each fridge.

One type of graph provided is a box-stem plot, which allows users
to group rows by the value in a specified column and see an
overview of their data. For example, when used with FoneAstra
(discussed later in the section on use cases) to monitor refrigerator
temperatures, a box-stem plot is used to get a quick overview of
the operating temperature range of multiple refrigerators. It is
easy to determine which may have been outside the acceptable
temperature range and for the percentage of the time they were
out of range. Shown below is a box-stem plot using data from a
FoneAstra deployment, with refrigerator ID used for the x-axis
and temperature for the y-axis as shown in Figure 3.

ODK Tables also provides line graphs and pie charts. A line graph
for the collection views with the FoneAstra data, for instance,
allows the table owner to view the temperature history of a single
refrigerator suspected of malfunctioning (by graphics only the
collection of rows that contain temperatures from that one
refrigerator) as shown in Figure 4.

Figure 4. A line graph of the temperature variation for one

particular refrigerator.

Apart from graphs for numeric data, ODK Tables also provides
calendar views and maps. The map view uses the Google Maps
API, which, although not available offline, provides complete
maps of many areas when an Internet connection is available. The
calendar view shows a day's schedule, and is useful for someone
who uses ODK Tables to manage appointments.

3. Performance
We measured performance of loading a table from SQLite for
display and generating line graphs. Our test databases each had

one table, with the first column holding an integer (between 1 and
10, inclusive), the second a string representing a date and time,
and the third a number between 0 and 50 rounded to the first digit
after the decimal. The tables were indexed on the first column,
and rows were evenly distributed among the 10 possible values in
that column (with the exception of the test database that had only
one row).

In testing table loading, we timed the display of a collection table
(all rows where the value in the first column was 1; a tenth of the
rows in the database). Similarly, the line graphs were generated
from a collection view, so the number of data points was a tenth
of the rows in the database. All of our performance tests were run
on a Droid phone with Android version 2.0.1. Times shown are
the averages of results from five trials.

As can be seen, with relatively large amounts of data in the
database, growth is generally linear in the number of rows being
displayed.

Most of the time seems to be spent displaying the table, rather
than accessing the database. An additional test with 10000 rows
distributed into 100 collections took an average of 2481.4ms to
display, making it much closer to the fourth test above (which also
had 100 rows per collection, but only 1000 rows in the database)
than the fifth test (which also had 10000 rows in the database, but
only 1000 per collection). This suggests that users could keep the
table display time manageable by using indexes to reduce the
number of rows displayed at once, even if their database contains
a fairly large amount of data.

Table 1. Performance of ODK Tables for loading and
graphing of different size tables.

Rows in
Database

Rows
Displayed

Collection
Table Load

Line
Graph Load

1 1 454.4ms 242.2ms
10 1 410.6ms 207.4ms

100 10 730.4ms 225.2ms
1000 100 2,426.8ms 437.8ms

10000 1000 21,563.8ms 858.8ms
20000 2000 48,258.2ms 1,671.4ms

4. Use Cases
Automated Data Collection
FoneAstra is a tool for deploying sensors by attaching them to
low-cost mobile phones so data can be collected via SMS [2]. Last
November, ODK Tables was used in connection with a FoneAstra
deployment in which vaccine storage units were monitored to
ensure temperature guidelines were followed. Data acquired by
the FoneAstra temperature sensors was sent automatically to an
Android phone running ODK Tables, which added the
refrigerator's ID number, current temperature, and the current time
to a new row in a table. This permitted supervisors to check the
status of all storage units from their own phones, as well as store
and view historical information.

Participatory Sensing

ODK Tables also allows users to collect data from large numbers
of people through their own basic mobile phones [3]. Since row
addition simply requires an SMS, an organization wanting to

collect data from citizens would simply publish a message format
and phone number (e.g., on a placard, flyer, or advertisement).
ODK Tables could thus be used for conducting low-cost surveys
as well as integrating data on particular resources (e.g., in a
disaster response scenario or to monitor water availability).

Microfinance

Microfinance organizations must track a large number of small
transactions that are handled by multiple agents [4]. ODK Tables
would permit information about loans and payments to be
collected on a supervisor’s mobile phone, and would only require
agents to carry a simple, low-cost phone. Our access control
model would ensure that only those authorized to do so could add
rows or access information from the database. This could include
read access for customers to check their own accounts and
transactions.

Basic Search

ODK Tables allows users to make databases of simple
information available via SMS. For example, a table populated
with weather forecasts could be queried based on location or date
(or both), or a table of bus schedules could be queried by route
and time. ODK Tables also allows queries with conditions such as
“time < thu” (to find rows with a time value earlier than the
upcoming Thursday) or “time > now” (to find only rows with time
values in the future, which table owners may often want to set as a
default).

Market Prices

One particular instance where both basic search and basic data
collection could be useful together is the exchange of price
information [5]. For example, farmers could send information
about their crops to a phone with ODK Tables, and buyers could
query the database to find the goods they are seeking. Data rows
might include type of crop, quantity, price, and location,
permitting buyers to limit results to their area or search based on
asking price. Figure 1 is an example of such a table.

Scheduling

ODK Tables includes several features designed for use in
managing schedules and setting appointments. Firstly, there is a
“date range” data type, which is composed of a pair of date-times
representing a time interval. Secondly, if a table has at least one
date range column, it can marked as the “availability” column. If
an availability column is used, queries return gaps in the schedule
as results, rather than the rows themselves. For example, if a work
day is defined as 8am to 6pm and rows already exist with date
range values from 9am to 11am and from 3pm to 4pm, a response
to a query would include the time from 8am to 9am, from 11am to
3pm, and 4pm to 6pm. Similarly, a table owner can set the
availability column to control row addition to prevent the addition
of a row that overlaps with an existing row. These appointment-
setting options could be useful for a variety of small businesses, as
well as other organizations like health clinics, to allow clients to
query/set/confirm their appointments.

5. Related Work
There have been a few efforts that seek to realize similar
capabilities of ODK Tables. Most efforts rely on a server in the
infrastructure to process messages, thereby raising the bar to
deployment. FrontlineSMS [6], RapidSMS [7], and UjU [8] are
all of this type. FrontlineSMS has shown the viability of many
use cases for SMS data. RapidAndroid [9] also uses the

smartphone as a server but does not provide a general-purpose
user interface to database tables. Finally, there are many
applications for smartphones that implement traditional
spreadsheets (i.e., Excel like functionality where formulas can be
attached to individual cells). We specifically chose to use
“tables” in the name of ODK Tables to highlight the distinction
from spreadsheets. ODK Tables’ formulas are all column-based
rather than cell-based. Finally, there are actions that are user
initiated by selecting rows and columns rather than by placing the
actions within a cell.

6. Conclusion and Future Work
ODK Tables introduces a graphical interface to databases stored
on smartphones. In addition to providing ways to browsing, re-
ordering, indexing, and modifying the tables, it provides
communication over SMS. SMS messages can insert new data
into the table and query the table contents under a flexible access
control mechanism. SMS message can be easily generated from
the table using templates.

To assess ODK Tables’ ease-of-use, we asked 7 users to follow a
tutorial to build their first ODK Tables application. Initial results
show that users are easily able to generalize the ODK Tables
model to a variety of applications after the initial tutorial.

We are now investigating improving ODK Tables SMS syntax,
adding synchronization with cloud storage as well as other
smartphones, and more fully integrating with the rest of the ODK
tools. We are engaged in discussions for possible deployments in
developing world contexts.

7. Acknowledgments
Julia Chu, Thienan Le, and Henry Qin participated in the
development of ODK Tables in CSE490D/HCDE419 at UW. We
also thank our usability study participants.

8. REFERENCES
[1] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng, G.

Borriello. Open Data Kit: Building Information Services for
Developing Regions. 4th IEEE/ACM International
Conference on ICTD, London, England, Dec 2010.

[2] R. Chaudhri, G. Borriello, R. Andesron, S. McGuire, E.
O'Rourke. FoneAstra: Enabling Remote Monitoring of
Vaccine Cold-Chains Using Commodity Mobile Phones,
ACM 1st Annual Symposium on Computing for
Development (DEV), London, England, Dec 2010.

[3] D. Estrin. Participatory Sensing: Applications and
Architecture, 8th International Conference on Mobile
Systems, Applications and Services (MobiSys’10), San
Francisco, CA Jun 2010.

[4] T. Parikh, et al. Mobile Phones and Paper Documents:
Evaluating a New Approach for Capturing Microfinance
Data in Rural India, ACM Conference on Computer-Human
Interaction (CHI), Montreal, Canada, Apr 2006.

[5] R. Veeraaghavan, N. Yasodhar, K. Toyama. Warana
Unwired: Replacing PCs with Mobile Phones in a Rural
Sugarcane Cooperative, 2nd International Conference on
ICTD, Bangalore, 2007.

[6] Frontline SMS, http://www.frontlinesms.com/.
[7] RapidSMS, http://www.rapidsms.org/.

[8] L. Wei-Chih et al. UjU: SMS-based applications made easy,
ACM 1st Annual Symposium on Computing for
Development (DEV), London, England, Dec 2010.

[9] RapidAndroid, http://rapidandroid.org/.

